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Preface

The student, who seems to be engulfed in our culture of specialization, too
quickly feels the necessity to establish an “area” of special interest. In keeping
with this spirit, academic bureaucracy has often forced us into a compart-
mentalization of courses, which pretend that linear algebra is disjoint from
modern algebra, that probability and statistics can easily be separated, and
even that advanced calculus does not build from elementary calculus.

This book is written from the point of view that there is an interdepen-
dence between real and complex variables that should be explored at ev-
ery opportunity. Sometimes we will discuss a concept in real variables and
then generalize to one in complex variables. Other times we will begin with
a problem in complex variables and reduce it to one in real variables. Both
methods—generalization and specialization—are worthy of careful considera-
tion.

We expect “complex” numbers to be difficult to comprehend and “imag-
inary” units to be shrouded in mystery. Hopefully, by staying close to the
real field, we shall overcome this regrettable terminology that has been thrust
upon us. The authors wish to create a spiraling effect that will first enable
the reader to draw from his or her knowledge of advanced calculus in order to
demystify complex variables, and then use this newly acquired understanding
of complex variables to master some of the elements of advanced calculus.

We will also compare, whenever possible, the analytic and geometric char-
acter of a concept. This naturally leads us to a discussion of “rigor”. The
current trend seems to be that anything analytic is rigorous and anything
geometric is not. This dichotomy moves some authors to strive for “rigor” at
the expense of rich geometric meaning, and other authors to endeavor to be
“intuitive” by discussing a concept geometrically without shedding any ana-
lytic light on it. Rigor, as the authors see it, is useful only insofar as it clarifies
rather than confounds. For this reason, geometry will be utilized to illustrate
analytic concepts, and analysis will be employed to unravel geometric notions,
without regard to which approach is the more rigorous.
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Sometimes, in an attempt to motivate, a discussion precedes a theorem.
Sometimes, in an attempt to illuminate, remarks about key steps and possible
implications follow a theorem. No apologies are made for this lack of terseness
surrounding difficult theorems. While brevity may be the soul of wit, it is not
the soul of insight into delicate mathematical concepts. In recognition of the
primary importance of observing relationships between different approaches,
some theorems are proved in several different ways. In this book, traveling
quickly to the frontiers of mathematical knowledge plays a secondary role to
the careful examination of the road taken and alternative routes that lead to
the same destination.

A word should be said about the questions at the end of each section. The
authors feel deeply that mathematics should be questioned—not only for its
internal logic and consistency, but for the reasons we are led where we are.
Does the conclusion seem “reasonable”? Did we expect it? Did the steps seem
natural or artificial? Can we re-prove the result a different way? Can we state
intuitively what we have proved? Can we draw a picture?1

“Questions”, as used at the end of each section, cannot easily be catego-
rized. Some questions are simple and some are quite challenging; some are
specific and some are vague; some have one possible answer and some have
many; some are concerned with what has been proved and some foreshadow
what will be proved. Do all these questions have anything in common? Yes.
They are all meant to help the student think, understand, create, and ques-
tion. It is hoped that the questions will also be helpful to the teacher, who
may want to incorporate some of them into his or her lectures.

Less need be said about the exercises at the end of each section because
exercises have always received more favorable publicity than have questions.
Very often the difference between a question and an exercise is a matter of
terminology. The abundance of exercises should help to give the student a
good indication of how well the material in the section has been understood.

The prerequisite is at least a shaky knowledge of advanced calculus. The
first nine chapters present a solid foundation for an introduction to complex
variables. The last four chapters go into more advanced topics in some detail,
in order to provide the groundwork necessary for students who wish to pursue
further the general theory of complex analysis.

If this book is to be used as a one-semester course, Chapters 5, 6, 7,
8, and 9 should constitute the core. Chapter 1 can be covered rapidly, and
the concepts in Chapter 2 need be introduced only when applicable in latter
chapters. Chapter 3 may be omitted entirely, and the mapping properties in
Chapter 4 may be omitted.

We wanted to write a mathematics book that omitted the word “trivial”.
Unfortunately, the Riemann hypothesis, stated on the last page of the text,

1 For an excellent little book elaborating on the relationship between questioning
and creative thinking, see G. Polya, How to Solve It, second edition, Princeton
University press, Princeton, New Jersey, 1957.
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could not have been mentioned without invoking the standard terminology
dealing with the trivial zeros of the Riemann zeta function. But the spirit, if
not the letter, of this desire has been fulfilled. Detailed explanations, remarks,
worked-out examples and insights are plentiful. The teacher should be able to
leave sections for the student to read on his/her own; in fact, this book might
serve as a self-study text.

A teacher’s manual containing more detailed hints and solutions to ques-
tions and exercises is available. The interested teacher may contact us by
e-mail and receive a pdf version.

We wish to express our thanks to the Center for Continuing Education
at the Indian Institute of Technology Madras, India, for its support in the
preparation of the manuscript.

Finally, we thank Ann Kostant, Executive Editor, Birkhäuser, who has
been most helpful to the authors through her quick and efficient responses
throughout the preparation of this manuscript.

S. Ponnusamy
IIT Madras, India

Herb Silverman
June 2005 College of Charleston, USA
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1

Algebraic and Geometric Preliminaries

The mathematician Euler once said, “God made integers, all else is the work
of man.” In this chapter, we have advanced in the evolutionary process to
the real number system. We partially characterize the real numbers and then,
alas, find an imperfection. The quadratic equation x2 +1 = 0 has no solution.

A new day arrives, the complex number system is born. We view a complex
number in several ways: as an element in a field, as a point in the plane, and
as a two-dimensional vector. Each way is useful and in each way we see an
unmistakable resemblance of the complex number system to its parent, the
real number system. The child seems superior to its parent in every way except
one—it has no order. This sobering realization creates a new respect for the
almost discarded parent.

The moral of this chapter is clear. As long as the child follows certain
guidelines set down by its parent, it can move in new directions and teach us
many things that the parent never knew.

1.1 The Complex Field

We begin our study by giving a very brief motivation for the origin of complex
numbers. If all we knew were positive integers, then we could not solve the
equation x+2 = 1. The introduction of negative integers enables us to obtain
a solution. However, knowledge of every integer is not sufficient for solving
the equation 2x − 1 = 2. A solution to this equation requires the study of
rational numbers.

While all linear equations with integers coefficients have rational solutions,
there are some quadratics that do not. For instance, irrational numbers are
needed to solve x2 − 2 = 0. Going one step further, we can find quadratic
equations that have no real (rational or irrational) solutions. The equation
x2 + 1 = 0 has no real solutions because the square of any real number
is nonnegative. In order to solve this equation, we must “invent” a number
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whose square is −1. This number, which we shall denote by i =
√
−1, is called

an imaginary unit.
Our sense of logic rebels against just “making up” a number that solves a

particular equation. In order to place this whole discussion in a more rigorous
setting, we will define operations involving combinations of real numbers and
imaginary units. These operations will be shown to conform, as much as possi-
ble, to the usual rules for the addition and multiplication of real numbers. We
may express any ordered pair of real numbers (a, b) as the “complex number”

a + bi or a + ib. (1.1)

The set of complex numbers is thus defined as the set of all ordered pairs
of real numbers. The notion of equality and the operations of addition and
multiplication are defined as follows:1

(a1, b1) = (a2, b2) ⇐⇒ a1 = a2, b1 = b2,

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),
(a1, b1)(a2, b2) = (a1a2 − b1b2, a1b2 + a2b1).

The definition for the multiplication is more natural than it appears to be,
for if we denote the complex numbers of the form (1.1), multiply as we would
real numbers, and use the relation i2 = −1, we obtain

(a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(a1b2 + a2b1).

Several observations should be made at this point. First, note that the formal
operations for addition and multiplication of complex numbers do not depend
on an imaginary number i. For instance, the relation i2 = −1 can be expressed
as (0, 1)(0, 1) = (−1, 0). The symbol i has been introduced purely as a matter
of notational convenience. Also, note that the order pair (a, 0) represents the
real number a, and that the relations

(a, 0) + (b, 0) = (a + b, 0) and (a, 0)(b, 0) = (ab, 0)

are, respectively, addition and multiplication of real numbers. Some of the
essential properties of real numbers are as follows: Both the sum and product
of real numbers are real numbers, and the order in which either operation is
performed may be reversed. That is, for real numbers a and b, we have the
commutative laws

a + b = b + a and a · b = b · a. (1.2)

The associative laws

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c, (1.3)

1 The symbol ⇐⇒ stands for “if and only if” or “equivalent to.”
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and the distributive law

a · (b + c) = a · b + a · c (1.4)

also holds for all real numbers a, b, and c. The numbers 0 and 1 are, respec-
tively, the additive and multiplicative identities. The additive inverse of a is
−a, and the multiplicative inverse of a (�= 0) is the real number a−1 = 1/a.
Stated more concisely, the real numbers form a field under the operations of
addition and multiplication.

Of course, the real numbers are not the only system that forms a field.
The rational numbers are easily seen to satisfy the above conditions for a
field. What is important in this chapter is that the complex numbers also
form a field. The additive identity is (0, 0), and the additive inverse of (a, b)
is (−a,−b). The multiplicative inverse of (a, b) �= (0, 0) is(

a

a2 + b2
,− b

a2 + b2

)
.

We leave the confirmation that the complex numbers satisfy all the axioms
for a field as an exercise for the reader.

The discerning math student should not be satisfied with the mere veri-
fication of a proof. He/she should also have a “feeling” as to why the proof
works. Did the reader ask why the multiplicative inverse of (a, b) might be
expected to be (

a

a2 + b2
,− b

a2 + b2

)
?

Let us go through a possible line of reasoning. If we write the inverse of
(a, b) = a + bi as

(a + ib)−1 =
1

a + ib
,

then we want to find a complex number c + di such that

1
a + ib

= c + id.

By cross multiplying, we obtain ac + i2bd + i(ad + bc) = 1, or{
ac − bd = 1,
ad + bc = 0.

The solution to these simultaneous equation is

c =
a

a2 + b2
, d = − b

a2 + b2
.

Can the reader think of other reasons to suspect that
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(a, b)−1 =
(

a

a2 + b2
,− b

a2 + b2

)
?

Let z = (x, y) be a complex number. Then x and y are called the real part of
z, Re z, and the imaginary part of z, Im z, respectively. Denote the set of real
numbers by R and the set of complex numbers by C. There is a one-to-one
correspondence between R and a subset of C, represented by x ↔ (x, 0) for
x ∈ R, which preserves the operations of addition and multiplication. Hence
we will use the real number x and the ordered pair (x, 0) interchangeably.
We will also denote the ordered pair (0, 1) by i. Because a complex number
is an ordered pair of real numbers, we use the terms C = R2 or C = R × R

interchangeably. Thus R × 0 is a subset of C consisting of the real numbers.
As noted earlier, an advantage of the field C is that it contains a root

of z2 + 1 = 0. In Chapter 8 we will show that any polynomial equation
a0 + a1z + · · · + anzn = 0 has a solution in C. But this extension from R to
C is not without drawbacks. There is an important property of the real field
that the complex field lacks. If a ∈ R, then exactly one of the following is
true:

a = 0, a > 0, −a > 0 (trichotomy).

Furthermore, the sum and the product of two positive real numbers is positive
(closure).

A field with an order relation < that satisfies the trichotomy law and these
two additional conditions is said to be ordered. In an ordered field, like the
real or rational numbers, we are furnished with a natural way to compare any
two elements a and b. Either a is less than b (a < b), or a is equal to b (a = b),
or a is greater than b (a > b). Unfortunately, no such relation can be imposed
on the complex numbers, for suppose the complex numbers are ordered; then
either i or −i is positive. According to the closure rule, i2 = (−i)2 = −1 is
also positive. But 1 must be negative if −1 is positive. However, this violates
the closure rule because (−1)2 = 1.

To sum up, there is a complex field that contains a real field that contains a
rational field. There are advantages and disadvantages to studying each field.
It is not our purpose here to state properties that uniquely determine each
field, although this most certainly can be done.

Questions 1.1.

1. Can a field be finite?
2. Can an ordered field be finite?
3. Are there fields that properly contain the rationals and are properly

contained in the reals?
4. When are two complex numbers z1 and z2 equal?
5. What complex numbers may be added to or multiplied by the complex

number a + ib to obtain a real number?
6. How can we separate the quotient of two complex numbers into its real

and imaginary parts?
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7. What can we say about the real part of the sum of the two complex
numbers? What about the product?

8. What kind of implications are there in defining a complex number as
an ordered pair?

9. If a polynomial of degree n has at least one solution, can we say more?
10. If we try to define an ordering of the complex numbers by saying that

(a, b) > (c, d) if a > b and c > d, what order properties are violated?
11. Can any ordered field have a solution to x2 + 1 = 0?

Exercises 1.2.

1. Show that the set of real numbers of the form a + b
√

2, where a and b
are rational, is an ordered field.

2. If a and b are elements in a field, show that ab = 0 if and only if either
a = 0 or b = 0.

3. Suppose a and b are elements in an ordered field, with a < b. Show that
there are infinitely many elements between a and b.

4. Find the values of

(a) (−2, 3)(4,−1) (b) (1 + 2i){3(2 + i) − 2(3 + 6i)}
(c) (1 + i)3 (d) (1 + i)4

(e) (1 + i)n − (1 − i)n.
5. Express the following in the form x + iy:

(a) (1 + i)−5 (b) (3 − 2i)/(1 − i)
(c) eiπ/2 +

√
2eiπ/4 (d) (1 + i)eiπ/6

(e)
a + ib

a − ib
− a − ib

a + ib
(f)

3 + 5i
7 + i

+
1 + i

4 + 3i

(g) (2 + i)2 + (2 − i)2 (h)
(4 + 3i)

√
3 + 4i

3 + i

(i)
(ai40 − i17)

−1 + i
, (a−real) (j) (−1 + i

√
3)60

(k)
√

1 + a2 + ia

a − i
√

1 + a2
, (a−real) (l)

(
√

3 − i)2(1 + i)5

(
√

3 + i)4
.

6. Show that (
−1 ±

√
3

2

)3

= 1 and

(
±1 ± i

√
3

2

)6

= 1

for all combinations of signs.
7. For any integers k and n, show that in = in+4k. How many distinct

values can be assumed by in?

1.2 Rectangular Representation

Just as a real number x may be represented by a point on a line, so may a
complex number z = (x, y) be represented by a point in the plane (Figure 1.1).
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0

y

y

z = (x, y )= x + iy

x x

Figure 1.1. Cartesian representation of z in plane

Each complex number corresponds to one and only one point. Thus the
terms complex number and point in the plane are used interchangeably. The
x and y axes are referred to as the real axis and the imaginary axis, while the
xy plane is called the complex plane or the z plane.

There is yet another interpretation of the complex numbers. Each point
(x, y) of the complex plane determines a two-dimensional vector (directed line
segment) from (0, 0), the initial point, to (x, y), the terminal point. Thus the
complex number may be represented by a vector. This seems natural in that
the definition chosen for addition of complex numbers corresponds to vector
addition; that is,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Geometrically, vector addition follows the so-called parallelogram rule, which
we illustrate in Figure 1.2. From the point z1, construct a vector equal in
magnitude and direction to the vector z2. The terminal point is the vector
z1 + z2. Alternatively, if a vector equal in magnitude and direction to z1 is
joined to the vector z2, the same terminal point is reached. This illustrates
the commutative property of vector addition. Note that the vector z1 + z2

is a diagonal of the parallelogram formed. What would the other diagonal
represent?

Figure 1.2. Illustration for parallelogram law
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Figure 1.3. Modulus of a complex number z

By the magnitude (length) of the vector (x, y) we mean the distance of
the point z = (x, y) from the origin. This distance is called the modulus
or absolute value of the complex number z, and denoted by |z|; its value is√

x2 + y2. For each positive real number r, there are infinitely many distinct
values (x, y) whose absolute value is r = |z|, namely the points on the circle
x2 + y2 = r2. Two of these points, (r, 0) and (−r, 0), are real numbers so that
this definition agrees with the definition for the absolute value in the real field
(see Figure 1.3).

Note that, for z = (x, y),{
|x| = |Re z| ≤ |z|,
|y| = |Im z| ≤ |z|.

The distance between any two points z1 = (x1, y1) and z2 = (x2, y2) is

|z2 − z1| =
√

(x2 − x1)2 + (y2 − y1)2.

The triangle inequalities {
|z1 + z2| ≤ |z1| + |z2|,
|z1 − z2| ≥ | |z1| − |z2| |

say, geometrically, that no side of a triangle is greater in length than the
sum of the lengths of the other two sides, or less than the difference of the
lengths of the other two sides (Figure 1.2). The algebraic verification of these
inequalities is left to the reader.

Among all points whose absolute value is the same as that of z = (x, y),
there is one which plays a special role. The point (x,−y) is called the conjugate
of z and is denoted by z. If we view the real axis as a two-way mirror, then z
is the mirror image of z (Figure 1.4).

From the definitions we obtain the following properties of the conjugate:
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Figure 1.4. Mirror image of complex numbers

{
z1 + z2 = z1 + z2,

z1z2 = z1z2.
(1.5)

Some of the important relationships between a complex number z = (x, y)
and its conjugates are ⎧⎪⎪⎨

⎪⎪⎩
z + z = (2x, 0) = 2Re z,
z − z = (0, 2y) = 2iIm z,

|z| = |z| =
√

x2 + y2,
zz = |z|2.

(1.6)

The squared form of the absolute value in (1.6) is often the most workable.
For example, to prove that the absolute value of the product of two complex
numbers is equal to the product of their absolute values, we write

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1z2) = (z1z1)(z2z2) = (|z1| |z2|)2.

Moreover, the conjugate furnishes us with a method of separating the inverse
of a complex number into its real and imaginary parts:

(a + bi)−1 =
1

a + bi
· a + bi

a + bi
=

a − bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

Equation of a line in C. Now we may rewrite the equation of a straight
line in the plane, with the real and imaginary axes as axes of coordinates, as

ax + by + c = 0, a, b, c ∈ R; i.e., a

(
z + z

2

)
+ b

(
z − z

2i

)
+ c = 0,
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where at least one of a, b is nonzero. That is,

(a − ib)z + (a + ib)z + 2c = 0.

Conversely, by retracing the steps above, we see that

αz + βz + γ = 0 (1.7)

represents a straight line provided α = β, α �= 0 and γ is real.

Equation of a circle in C. A circle in C is the set of all point equidistant
from a given point, the center. The standard equation of a circle in the xy
plane with center at (a, b) and radius r > 0 is (x − a)2 + (y − b)2 = r2. If we
transform this by means of the substitution z = x + iy, z0 = a + ib, then we
have z − z0 = (x − a) + i(y − b) so that

(z − z0)(z − z0) = |z − z0|2 = (x − a)2 + (y − b)2 = r2.

Therefore, the equation of the circle in the complex form with center z0 and
radius r is |z − z0| = r. In complex notation we may rewrite this as

zz − (zz0 + zz0) + z0z0 = r2, i.e. zz − 2Re [z(a − ib)] + a2 + b2 − r2 = 0,

where z0 = a + ib. Thus, in general, writing a − ib = β and γ = a2 + b2 − r2,
we see that

α|z|2 + βz + βz + γ = 0, i.e.
∣∣∣∣z +

β

α

∣∣∣∣
2

=
|β|2 − αγ

α2
, (1.8)

represents a circle provided α, γ are real, α �= 0 and |β|2 − αγ > 0.
The formulas in (1.6) produce

|z1 + z2|2 = |z1|2 + 2Re (z1z2) + |z2|2. (1.9)

Also, for two complex numbers z1 and z2, we have

(i) |1 − z1z2|2 − |z1 − z2|2 = (1 + |z1| |z2|)2 − (|z1| + |z2|)2, since2

L.H.S = (1 − z1z2)(1 − z1z2) − (z1 − z2)(z1 − z2)
= 1 − (z1z2 + z1z2) + |z1z2|2

− (|z1|2 + |z2|2 − z1z2 − z1z2)
= 1 + |z1z2|2 − (|z1|2 + |z2|2)
= (1 − |z1|2)(1 − |z2|2)
= R.H.S.

Further, it is also clear from (i) that if |z1| < 1 and |z2| < 1, then
2 L.H.S is to mean left-hand side and R.H.S is to mean right-hand side.



10 1 Algebraic and Geometric Preliminaries

|z1 − z2| < |1 − z1z2|

and if either |z1| = 1 or |z2| = 1, then

|z1 − z2| = |1 − z1z2|.

(ii) |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) (Parallelogram identity ); for,

L.H.S = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)
= [|z1|2 + (z1z2 + z1z2) + |z2|2]

+ [|z1|2 − (z1z2 + z1z2) + |z2|2]
= R.H.S.

Example 1.3. Let us use the triangle inequality to find upper and lower
bounds for |z4 − 3z + 1|−1 whenever |z| = 2. To do this, we need to find m
and M so that m ≤ |z4 −3z +1|−1 ≤ M for |z| = 2. As |3z−1| ≤ 3|z|+1 = 7
for |z| = 2, we have

|z4 − 3z + 1| ≥ | |z4| − |3z − 1| | ≥ 24 − 7 = 9

and |z4 − 3z + 1| ≤ |z|4 + |3z − 1| = 24 + 7 = 23. Thus, for |z| = 2, we have

1
23

≤ |z4 − 3z + 1|−1 ≤ 1
9
. •

Example 1.4. Suppose that we wish to find all circles that are orthogonal to
both |z| = 1 and |z − 1| = 4. To do this, we consider two circles:

C1 = {z : |z − α1| = r1}, C2 = {z : |z − α2| = r2}.

These two circles are orthogonal to each other if (see Figure 1.5)

r2
1 + r2

2 = |α1 − α2|2.

In view of this observation, the conditions for which a circle |z − α| = R is
orthogonal to both |z| = 1 and |z − 1| = 4 are given by

1 + R2 = |α − 0|2 and 42 + R2 = |α − 1|2 = 1 + |α|2 − 2Re α

which give R = (|α|2 − 1)1/2 and Reα = −7. Consequently,

α = −7 + ib and R = (49 + b2 − 1)1/2 = (48 + b2)1/2

and the desired circles are given by

Cb : |z − (−7 + ib)| = (48 + b2)1/2, b ∈ R. •
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Example 1.5. We wish to show that triangle 
ABC with vertices z1, z2, z3

is equilateral if and only if

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1. (1.10)

To do this, we let α = z2−z1, β = z3−z2, and γ = z1−z3 so that α+β+γ = 0.
Further, if 
ABC is equilateral, then (see Figure 1.6)

α + β + γ = 0 ⇐⇒ α + β + γ = 0

⇐⇒ αα

α
+

ββ

β
+

γγ

γ
= 0

⇐⇒ 1
α

+
1
β

+
1
γ

= 0 (∵ |α| = |β| = |γ|)

⇐⇒ 1
z2 − z1

+
1

z3 − z2
+

1
z1 − z3

= 0

⇐⇒ (z3 − z2)(z1 − z3) + (z2 − z1)(z1 − z3)
+ (z2 − z1)(z3 − z2) = 0

⇐⇒ z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1.

Conversely, suppose that (1.10) holds. Then

1
α

+
1
β

+
1
γ

= 0 =⇒ αβ + βγ + γα = 0

=⇒ αβ + γ(−γ) = 0, since α + β = −γ,

=⇒ αβ = γ2.

Thus, αβ = γ2. Similarly, βγ = α2 and γα = β2. Further,

(αβ)(αβ) = γ2(γ)2, i.e., (αα)(ββ)(γγ) = (γγ)3.

Because of the symmetry, we also have

Figure 1.5. Orthogonal circles
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Figure 1.6. Equilateral triangle �ABC

(αα)(ββ)(γγ) = (αα)3 and (αα)(ββ)(γγ) = (ββ)3.

Thus,

1
α

+
1
β

+
1
γ

= 0 =⇒ |α|3 = |β|3 = |γ|3 =⇒ |α| = |β| = |γ|,

showing that 
ABC is equilateral.
Here is an alternate proof. First we remark that equilateral triangles are

preserved under linear transformations f(z) = az + b, which can be easily
verified by replacing zj by azj + b (j = 1, 2, 3) in (1.10). By a suitable trans-
formation, we can reduce the problem to a simpler one. If z1, z2, z3 are the
vertices of a degenerated equilateral triangle (i.e., z1 = z2 = z3), then (1.10)
holds. If two of the vertices are distinct, then, by a suitable transformation,
we can take z1 = 0 and z2 = 1. Then (1.10) takes the form 1+ z2

3 = z3, which
gives

z3 =
1 + i

√
3

2
or

1 − i
√

3
2

.

In either case {0, 1, z3} forms vertices of an equilateral triangle. •
Example 1.6. Suppose we wish to describe geometrically the set S given by

S = {z : |z − a| − |z + a| = 2c} (0 �= a ∈ C, c ≥ 0), (1.11)

for the following situations:

(i) c > |a| (ii) c = 0 (iii) 0 < c < a (iv) c = a > 0.

The triangle inequality gives that

|2a| = |z − a − (z + a)| ≥ |z − a| − |z + a| = 2c, i.e., c ≤ |a|.

Thus, there are no complex numbers satisfying (1.11) if c > |a|. Hence, S = ∅
whenever c > |a|.
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If c = 0, we have |z − a| = |z + a| which shows that S is the line that is
the perpendicular bisector of the line joining a and −a.

Next, we consider the case a > c > 0. Then, writing z = x + iy,

|z − a| − |z + a| = 2c ⇐⇒ |z − a|2 = (2c + |z + a|)2

⇐⇒ |z − a|2 = 4c2 + |z + a|2 + 4c|z + a|
⇐⇒ c|z + a| + c2 = −aRe z (Re z < 0)
⇐⇒ c2[|z|2 + a2 + 2aRe z] = (c2 + aRe z)2

⇐⇒ c2|z|2 − a2(Re z)2 = c2(c2 − a2)

⇐⇒ x2

c2
− y2

a2 − c2
= 1.

Further, we observe that for |z − a| − |z + a| to be positive, we must have
Re z < 0. Thus, if a > c > 0 we have

S =
{

x + iy :
x2

c2
− y2

a2 − c2
= 1

}

and so S describes a hyperbola with focii at a,−a.
Finally, if c = a then

|z − a| − |z + a| = 2a ⇐⇒ |z + a| = −Re (z + a) =⇒ Re (z + a) < 0

and therefore, S in this case is the interval (−∞,−a]. •
Questions 1.7.

1. In Figure 1.2, would we still have a parallelogram if the vector z2 were
in the same or the opposite direction as that of z1?

2. Geometrically, can we predict the quadrant of z1+z2 from our knowledge
of z1 and z2?

3. Why don’t we define multiplication of complex numbers as vector mul-
tiplication?

4. When does the triangle inequality become an equality?
5. What would be the geometric interpretation of the inequality for the

sum of n complex numbers?
6. Name some interesting relationships between the points (x, y) and

(−x, y).
7. If a and b are positive rational numbers, why might we want to call the

numbers
√

a +
√

b and
√

a −
√

b real conjugates?
8. Is every rational number algebraic? Are

√
3 and 5

√
5 − 3i algebraic?

Note: A number is algebraic if it is a solution of a polynomial (in z)
with integer coefficients. Numbers which are not algebraic are called
transcendental numbers.

9. What does |z|2 + βz + βz + γ = 0 represent if |β|2 ≥ γ?
10. Is |z + 1| + |z − 1| ≤ 2

√
2 if |z| ≤ 1?
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Exercises 1.8.

1. If z1 = 3 − 4i and z2 = −2 + 3i, obtain graphically and analytically
(a) 2z1 + 4z2

(d) |z1 + z2|
(b) 3z1 − 2z2

(e) |z1 − z2|
(c) z1 − z2 − 4
(f) |2z1 +3z2−1|.

2. Let z1 = x1 + iay1 and z2 = x2 − ib/y1, where a, b are real. Determine
a condition on y1 so that z−1

1 + z−1
2 is real.

3. Identify all the points in the complex plane that satisfy the following
relations.
(a) 1 < |z| ≤ 3
(c) |z − 1| + |z + 1| = 2
(e) Re z2 > 0
(g) Re ((1 − i)z) = 2
(i) Re (z) = |z|
(k) z = 5/(z − 1) (z �= 1)

(b) |(z − 3)/(z + 3)| < 2
(d) Re (z − 5) = |z| + 5
(f) Im z2 > 0
(h) |z − i| = Re z
(j) Re (z2) = 1
(l) [Im (iz)]2 = 1.

4. Let |(z − a)/(z − b)| = M , where a and b are complex constants and
M > 0. Describe this curve and explain what happens as M → 0 and
as M → ∞.

5. Find a complex form for the hyperbola with real equation 9x2−4y2 = 36.
6. If |z| < 1, prove that

(a) Re
(

1
1 − z

)
>

1
2

(b) Re
(

z

1 − z

)
> −1

2
(c) Re

(
1 + z

1 − z

)
> 0.

7. If P (z) is a polynomial equation with real coefficients, show that z1 is a
root if and only if z1 is a root. Conclude that any polynomial equation
of odd degree with real coefficients must have at least one real root. Can
you prove this using elementary calculus?

8. Prove that, for every n ≥ 1,

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn|.

9. Let a1, a2, . . . , an and b1, b2, . . . , bn be complex numbers. Prove the
Schwarz inequality,∣∣∣∣∣

n∑
k=1

akbk

∣∣∣∣∣
2

≤
(

n∑
k=1

|ak|2
)(

n∑
k=1

|bk|2|
)

.

When will equality hold?
10. Define e(α) = cos α + i sinα, for α real. Prove the following.

(a) e(0) = 1
(c) e(α1 + α2) = e(α1)e(α2)

(b) |e(α)| = 1
(d) e(nα) = [e(α)]n.

Which of these properties does the real-valued function f(x) = ex

satisfy?
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11. Show that the line connecting the complex numbers z1 and z2 is per-
pendicular to the line connecting z3 and z4 if and only if

Re {(z1 − z2)(z3 − z4)} = 0.

12. If a, b are real numbers in the unit interval (0, 1), then when do the three
points z1 = a + i, z2 = 1 + ib and z3 = 0 form an equilateral triangle?

13. If |zj | = 1 (j = 1, 2, 3) such that z1 + z2 + z3 = 0, then show that zj ’s
are the vertices of an equilateral triangle.

1.3 Polar Representation

In Section 1.2, the magnitude of the vector z = x + iy was discussed. What
about its direction? A measurement of the angle θ that the vector z ( �= 0)
makes with the positive real axis is called an argument of z (see Figure 1.7).
Thus, we may express the point z = (x, y) in the “new” form

(r cos θ, r sin θ).

This, of course, is just the polar coordinate representation for the complex
number z. We have the familiar relations

r = |z| =
√

x2 + y2 and tan θ =
y

x
.

The real numbers r and θ, like x and y, uniquely determine the complex num-
ber z. Unfortunately, the converse isn’t completely true. While z uniquely
determines the x and y, hence r, the value of θ is determined up to a multi-
ple of 2π. There are infinitely many distinct arguments for a given complex
number z, and the symbol arg z is used to indicate any one of them. Thus the
arguments of the complex number (2, 2) are

π

4
+ 2kπ (k = 0,±1,±2, . . . ).

This inconvenience can sometimes (although not always) be ignored by distin-
guishing (arbitrarily) one particular value of arg z. We use the symbol Arg z
to stand for the unique determination of θ for which −π < arg z ≤ π. This θ
is called the principal value of the argument. To illustrate,

Arg (2, 2) =
π

4
, Arg (0,−5) = −π

2
, Arg (−1,

√
3) =

2π

3
.

Note that Re z > 0 is equivalent to |Arg z| < π/2. If x = y = 0, the expression
tan θ = y/x has no meaning. For this reason, arg z is not defined when z = 0.

Suppose that z1 and z2 have the polar representations

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).
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Figure 1.7. Polar representation of z and z1z2

Then

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1)]
= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Loosely speaking, we may say that the argument of the product of two nonzero
complex numbers is equal to the sum of their arguments; that is,

arg(z1z2) = arg z1 + arg z2. (1.12)

We understand (1.12) to mean that if θ1 is one of the values of arg z1 and θ2

is one of the values of arg z2, then θ1 + θ2 is one of the values of arg(z1z2).
Since (1.12) is valid only up to a multiple of 2π, a more explicit formulation
is

arg z1z2 = arg z1 + arg z2 + 2kπ (k an integer)

or
arg z1z2 = arg z1 + arg z2 (mod 2π)

(see Figure 1.7). To illustrate, we observe that if z = (−1 + i
√

3)/2, then
z2 = (−1 − i

√
3)/2 so that

Arg z =
2π

3
and Arg (z2) = −2π

3
.

Thus, Arg (z.z) = Arg z + Arg z − 2π.
An induction argument (no pun intended) shows that if zi has modulus ri

and argument θi (i = 1, 2, . . . , n), then

z1z2 · · · zn = r1r2 · · · rn[cos(θ1 + θ2 + · · · + θn) (1.13)
+i sin(θ1 + θ2 + · · · + θn)].

Example 1.9. Let z1 = 1 + i and z2 =
√

3 + i. We wish to express them
in polar form and then verify the identities that hold for multiplication and
division of z1 and z2, respectively. To do this, we may write

z1 =
√

2eiπ/4 and z2 = 2eiπ/6.
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Figure 1.8. Geometric proof for Example 1.10

Then
z1z2 = 2

√
2ei5π/12 and

z1

z2
=

1√
2
eiπ/12.

Thus, in this particular problem of product and division, it follows that

Arg (z1z2) = Arg z1 + Arg z2 and Arg
(

z1

z2

)
= Arg z1 − Arg z2.

Similarly, we may easily check the following:

(i) (1 − i
√

3)/(1 + i
√

3) = eiθ, θ = 2π/3 + 2kπ ;
(ii) (−

√
3 + i)(1 + i)/(1 + i

√
3) =

√
2eiθ, θ = 3π/4 + 2kπ ;

(iii) (1 − 3i)/(2 − i) =
√

2eiθ, θ = −π/4 + 2kπ,

where k is an integer. •
Example 1.10. Suppose that z1 and z2 are two nonzero complex numbers
such that |z1| = |z2| but z1 �= ±z2. Then we wish to show that the quotient
(z1 + z2)/(z1 − z2) is a purely imaginary number. For a geometric proof, we
consider the parallelogram OPRQ shown in Figure 1.8. Since the sides OP
and OQ are equal in length, OPRQ is a rhombus. Thus, the vector −→

OR is
perpendicular to the vector −→

PQ, and so

Arg (z1 + z2) = Arg (z1 − z2) ± iπ/2.

For an analytic proof, we may rewrite

w =
z1 + z2

z1 − z2
=

1 + z

1 − z
(z = z2/z1).

The hypotheses imply that |z| = 1, z �= ±1. Therefore, letting z = eiθ with
θ ∈ (0, 2π)\{π},

w =
1 + eiθ

1 − eiθ
=

e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
=

2 cos(θ/2)
−2i sin(θ/2)

= i cot (θ/2),

which is a purely imaginary number. •
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Example 1.11. Let z = sin θ + i cos 2θ and w = cos θ + i sin 2θ. We wish to
show that there exists no value of θ for which z = w. To do this, we first note
that

z = w ⇐⇒ sin θ = cos θ and cos 2θ = sin 2θ.

There exists no values of θ satisfying both conditions, because sin θ = cos θ
implies that cos 2θ = cos2 θ − sin2 θ = 0, and so the second condition reduces
to sin 2θ = 2 sin θ cos θ = 0, i.e., sin θ = 0 = cos θ. •
Remark 1.12. Geometric considerations (Figures 1.2 and 1.7) indicate that
the rectangular representation will frequently be more useful for problems
involving sums of complex numbers, with polar representation being more
useful for problems involving products. •

If we let z1 = z2 = · · · = zn in (1.13), we obtain

zn = rn(cos nθ + i sinnθ). (1.14)

For |z| = 1 (the unit circle), (1.14) reduces to

(cos θ + i sin θ)n = cos nθ + i sinnθ, (1.15)

a theorem of DeMoivre.
The possibility of finding nth roots of the complex number is suggested by

(1.14). A complex number z is an nth root of z0 if zn = z0, written z = z
1/n
0 .

The problem is to reverse the multiplicative operation and determine a
number which, when multiplied by itself n times, furnishes us with the original
number. Given a complex number z0 = r0(cos θ0 + i sin θ0), how do you find a
complex number z = r(cos θ + i sin θ) such that zn = z0? By (1.14), we must
have

rn(cos nθ + i sinnθ) = r0(cos θ0 + i sin θ0). (1.16)

Since | cos α + i sinα| = 1 for all real α, (1.16) yields the relations

rn = r0, cos nθ + i sinnθ = cos θ0 + i sin θ0. (1.17)

The first relation in (1.17) shows that |z| = r
1/n
0 , which we already knew

(why)? But the second gives important information about the argument of
z, namely, that n arg z differs from arg z0 by a multiple of 2π (that is, nθ =
θ0 + 2kπ, k = 0,±1,±2, . . . ):

θ =
θ0 + 2kπ

n
. (1.18)

How many integers k in (1.18) produce distinct solutions? We have

z = z
1/n
0 = r

1/n
0

{
cos

(
θ0 + 2kπ

n

)
+ i sin

(
θ0 + 2kπ

n

)}
. (1.19)
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For each k (k = 0, 1, 2, . . . , n− 1), there is a different value for z. We leave it
for the reader to verify that there are no more solutions. Thus, given z0 �= 0,
there are exactly n distinct complex numbers z such that zn = z0.

By letting z0 = 1 in (1.19), we may find the nth roots of unity. If zn = 1,
then

z = cos
(

2kπ

n

)
+ i sin

(
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1). (1.20)

Geometrically, the solutions represent the n vertices of a regular polygon of
n sides inscribed in a circle with center at the origin and radius equal to one.
See Figures 1.9 and 1.10 for the inscribed square and pentagon.

By (1.20), the difference in the arguments of any two successive nth roots
of unity is constant (2π/n). If we let

ω = cos
2π

n
+ i sin

2π

n
,

then each root of unity may be expressed as a multiple of ω; that is,

ω, ω2, ω3, . . . , ωn−1, ωn = ω0 = 1.

This gives interesting information about the sums and products of the roots of
the unity, namely, that the product of any two roots of unity is also a root of
unity, and that the sum of all nth roots of unity is zero. The latter statement
follows from the identify

1 + ω + ω2 + · · · + ωn−1 =
1 − ωn

1 − ω
.

Using (1.19), we easily see, for instance, the following:

(a) ∗√3 + 4i = ±(2 + i)
(b) ∗√−3 + 4i = ±(1 + 2i)

Figure 1.9. Illustration for the 4th roots of unity
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Figure 1.10. Illustration for the 5th roots of unity

(c) ∗√1 + i = ±

⎛
⎝
√√

2 + 1
2

+ i

√√
2 − 1
2

⎞
⎠

(d) ∗√2i = ±(1 + i)

(e) ∗
√

1 − i
√

3
2

= ±
(√

3 − i

2

)

(f) ∗
√

1 + i
√

3 = ±
(√

3 + i√
2

)

(g) ∗√−5 − 12i = ±(−2 + 3i)
(h) ∗√5 + 12i = ±(3 + 2i)
(i) ∗√−5 + 12i = ±(2 + 3i).

Here ∗√a + ib denotes the two 2th roots of the complex number a + ib.
Since the n nth roots of unity are given by (1.20), we have

zn − 1 = (z − 1)(z − ω1)(z − ω2) · · · (z − ωn−1), ωk = ωk = e2πki/n.

Dividing both sides by z − 1, using the identity

1 + z + z2 + · · · + zn−1 =
1 − zn

1 − z
(z �= 1),

and letting z → 1, we have

n = (1 − ω1)(1 − ω2) · · · (1 − ωn−1), and
n = (1 − ω1)(1 − ω2) · · · (1 − ωn−1).

As (1 − e−iθ)(1 − eiθ) = 2(1 − cos θ) = 4 sin2(θ/2), it follows that

n2 =
n−1∏
k=1

|1 − ωk|2 =
n−1∏
k=1

{
4 sin2

(
kπ

n

)}
= 22(n−1)

n−1∏
k=1

sin2

(
kπ

n

)
.
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Taking the positive square root on both sides we have

n = 2n−1
n−1∏
k=1

sin
(

kπ

n

)
, n > 1. (1.21)

We can make the following generalization: Consider the equation

Ma(z) = z2n − 2znan cos nφ + a2n = 0 (n ∈ N, a ∈ R+, φ ∈ R).

Solving this for zn, we find zn = ane±inφ so that

Ma(z) = [zn − aneinφ][zn − ane−inφ].

Therefore, using the concept of nth root of a complex number, we can write

Ma(z) =
n∏

k=1

[
z − aei(φ+2kπ/n)

] [
z − ae−i(φ+2kπ/n)

]

=
n∏

k=1

[
z2 − 2za cos

(
φ +

2kπ

n

)
+ a2

]
. (1.22)

Some special cases of (1.22) follow:

(a) Taking φ = 0, we have

(zn − an)2 =
n∏

k=1

[
z2 − 2za cos

(
2kπ

n

)
+ a2

]
.

(b) Taking φ = π/n, we have

(zn + an)2 =
n∏

k=1

[
z2 − 2za cos

(
(2k + 1)π

n

)
+ a2

]
.

(c) If a = 1 then, on dividing (1.22) by zn, z �= 0, we have

zn + z−n − 2 cos(nφ) =
n∏

k=1

[
z + z−1 − 2 cos

(
φ +

2kπ

n

)]

and so, if z = eiθ, this becomes

cos(nθ) − cos(nφ) = 2n−1
n∏

k=1

[
cos θ − cos

(
φ +

2kπ

n

)]

which is, for cos θ �= cos φ, equivalent to

cos(nθ) − cos(nφ)
cos θ − cos φ

= 2n−1
n−1∏
k=1

[
cos θ − cos

(
φ +

2kπ

n

)]
.
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In the limiting case when θ, φ → 0, the above reduces to

n = 2n−1
n−1∏
k=1

sin
(

kπ

n

)
,

which is nothing but (1.21).

Questions 1.13.

1. What problem would be created by defining the argument of z = 0 to
be zero?

2. Loosely speaking, for complex numbers z1 and z2 we have

arg(z1z2) = arg z1 + arg z2.

What real-valued functions have the property that

f(x1x2) = f(x1) + f(x2)?

3. When does Arg (z1z2) = Arg z1 + Arg z2?
4. How are the complex numbers z1 and z2 related if arg(z1) = arg z2?
5. How are the arguments arg(z1) and arg z2 related if z1 = z2?
6. How are the arguments arg(z1) and arg z2 related if Re (z1z2) = |z1z2|?
7. How are the arguments arg(z1) and arg z2 related if |z1+z2| = |z1|+|z2|?
8. As the complex number z approaches the negative real axis from above

and below, what is happening to Arg z? What if z approaches the posi-
tive real axis from above and below?

9. How do the arguments of z and 1/z compare?
10. How do the arguments of z and z compare?
11. How do the arguments of z and 1/z compare?
12. What is the position of the complex number (cosα + i sin α)z relative

to the position of z?
13. What are some differences between the terms angle, real number, and

argument?
14. Of what use might the binomial theorem be in this section?
15. For which integers n does zn = 1 have only real solutions?
16. For which complex numbers z does

√
z/z = z/|z|?

17. Is it always the case that for any given nonzero complex number, either√
z2 = z or

√
z2 = −z?

18. Which postulates for a field are satisfied by the roots of unity under
ordinary addition and multiplication of complex numbers?

19. What can you say about the nth roots of an arbitrary complex number?
20. For α an arbitrary real number, how many solutions might you expect

zα = 1 to have?
21. If z = eiα (α ∈ (0, 2π)), is (1 + z)/(1 − z) equal to i cot(α/2)?
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Exercises 1.14.

1. For a fixed positive integer n, determine the real part of (1 + i
√

3)n.
2. Find two complex numbers z1 and z2 so that

Arg (z1z2) �= Arg z1 + Arg z2.

3. Find two complex numbers z1 and z2 so that

Arg (z1z2) = Arg z1 + Arg z2.

4. Describe the following regions geometrically.
(a) Arg z = π/6, |z| > 1
(c) −π < Arg z < 0, |z + i| > 2

(b) π/4 < Arg z < π/2
(d) 1 < |z − 1| < 5.

5. If |1 − z| < 1, show that |Arg z| < π/2.
6. If |z| < 1, show that |Arg ((1 + z)/(1 − z))| < π/2.
7. If Re z > 0, show that Re (1/z) > 0. If Re z > a > 0, what can you say

about Re (1/z)?
8. If |z| = 1, z �= −1, show that z may be expressed in the form

z =
1 + it

1 − it
,

where t is a real number.
9. Write the polar form of the following:

(a)
1 + cos φ + i sinφ

1 + cos φ − i sinφ
(0 < φ < π/2)

(b)
1 + cos φ + i sinφ

1 − cos φ − i sinφ
(c) 1 − sinφ + i cos φ (0 < φ < π/2)
(d) − sinφ − i cos φ
(e) (1 + i)n (n ∈ N)
(f) (1 + i

√
3)n + (1 − i

√
3)n (n ∈ N).

10. Find all values of the following and simplify the expressions as much as
possible.

(a) i1/2 (b) i1/4 (c) (−i)1/3 (d)
√

1 + i

(e) 6
√

8 (f)
√

4 + 3i (g) (4 − 3i)1/3 (h)
√

2 + i

11. If ω = (−1 + i
√

3)/2 is a cube root of unity and if

Sn = 1 − ω + ω2 + · · · + (−1)n−1ωn−1,

then find a formula for Sn.
12. Let ω be a cube root of unity and let a, b, c be real. Determine a condition

on a, b, c so that (a + bω + cω2)3 is real.
13. Let ω be a cube root of unity. Determine the value of

(a) (1 + ω)3 (b) (1 + 2ω + ω2)(1 + ω + 2ω2)

(c) (1 + ω + 2ω2)9 (d) (1 + 3ω + 2ω2)(1 + 4ω + 3ω2).
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14. Let ω �= 1 be an nth root of unity. Show that

1 + 2ω + 3ω2 + · · · + nωn−1 = − n

1 − ω
.

15. Let ωk = cos(2kπ/n) + i sin(2kπ/n). Show that
∑n

k=1 |ωk − ωk−1| < 2π
for all values of n. What happens as n approaches ∞?

16. Find the roots of the equation (1 + z)5 = (1 − z)5.
17. Find α, β, γ and δ such that the roots of the equation

z5 + αz4 + βz3 + γz2 + δz + η = 0

lie on a regular pentagon centered at 1.
18. Prove that for any real x and a natural number n,

ei2n cot−1(x)

(
ix + 1
ix − 1

)n

= 1.

19. Find a positive integer n such that

(i) (
√

3 + i)n = 2n (ii) (−1 + i)n = 2n/2.
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Topological and Analytic Preliminaries

The neighborhood of a young child consists of the people very close on the left
and right. As we get older we think in terms of two-dimensional neighborhoods
(the people around the corner) or even three-dimensional neighborhoods (the
people in the world). In this chapter we do likewise. We develop numerous
methods for accurately describing sets in the real line (one-dimensional) and
the plane (two-dimensional). In order to track down the elusive point at in-
finity, it becomes necessary to introduce the sphere (three-dimensional).

When a set is described in a satisfactory manner, we become concerned
about its image. We investigate conditions under which properties of a set are
preserved when the set is transformed into a new set. A remarkable outcome
of our investigation is that the removal of a single point from one set may
entirely change its character, whereas the removal of infinitely many points
from a different set may be insignificant. The removal of two points from a set
on the line may give it more affinity to a set in the plane than to its former
self. In this chapter we learn that in a sense all points are equal but some
points are more equal than others.

2.1 Point Sets in the Plane

A neighborhood of a real number x0 is an interval in the form (x0 − ε, x0 + ε),
where ε is any positive real number. Thus we may say that an ε neighborhood
of x0 is the set of points x ∈ R for which |x−x0| < ε. There are different ways
to extend this one-dimensional neighborhood concept to include points in the
plane. A square ε neighborhood of a point (x0, y0) is the set of all points (x, y)
whose coordinates satisfy the two inequalities

|x − x0| < ε, |y − y0| < ε.

It consists of all points inside a square centered at (x0, y0). The sides of the
square are parallel to the coordinate axes and have length 2ε. A circular ε
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Figure 2.1. Illustration for open sets in the plane

neighborhood of (x0, y0) is the set of all points (x, y) whose distance from
(x0, y0) is less than ε. It consists of all points (x, y) such that√

(x − x0)2 + (y − y0)2 < ε,

i.e., points inside a circle centered at (x0, y0) whose radius is ε. Observe that
every square neighborhood of a point contains a circular neighborhood of the
point, and every circular neighborhood of a point contains a square neighbor-
hood of the point (for a smaller ε, of course). This is illustrated in Figure 2.1.
From our point of view (that a point in the plane represents a complex num-
ber), it will be more convenient to deal with circular neighborhoods, for then
an ε neighborhood of the complex number z0 consists of all points z ∈ C

satisfying the inequality |z − z0| < ε. Such a neighborhood is denoted by
N(z0; ε).

Care must be taken to distinguish between a neighborhood on the real line
and a neighborhood in the plane. For example, {x ∈ R : −1 < x < 1} is a
neighborhood of 0, a point on the line; it is not a neighborhood of (0, 0), a point
in the plane. A point in the plane is not permitted to have a one-dimensional
neighborhood.

The definitions and theorems in this section are valid simultaneously for
points on the line and points in the plane, when the concepts of ε neighborhood
are suitably interpreted. A set is said to be bounded if it is contained in some
disk centered at the origin. A point is said to be an interior point of a set if
there is some neighborhood of the point contained in the set. An important
distinction between the bounded sets

A = {z ∈ C : |z − z0| < ε} and B = {z ∈ C : |z − z0| ≤ ε}

is that every point in A is an interior point. To see this, let z1 be any point
in A. Then |z − z0| = δ for some δ, 0 ≤ δ < ε. But for η = (ε − δ)/2, we
have N(z1; η) ⊂ N(z0; δ) (see Figure 2.2). Of course, no point on the circle
|z − z0| = ε is an interior point of B. A set A is called an open set if every
point in A is an interior point. We have shown that a neighborhood of a point
in the plane is an open set. Other simple examples of open sets in the plane
are
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Figure 2.2. Description for an interior point

(a) the empty set,
(b) the set of all complex numbers,
(c) {z : |z| > r}, r ≥ 0,
(d) {z : r1 < |z| < r2}, 0 ≤ r1 < r2,
(e) the intersection of any two open sets,
(f) the union of any collection of open sets.

Remark 2.1. An open interval on the real line is not an open set in the plane,
since any neighborhood of a point will contain points in the plane that are
not real. •

A deleted ε neighborhood of z0, denoted by N ′(z0; ε), is the set of all points
z such that 0 < |z − z0| < ε. That is, the point z0 is “punched out” from the
set. A point z0 is called a limit point of a set A if every deleted neighborhood
of z0 contains a point of A. Note that a limit point z0 may or may not be in
the set A.

Examples 2.2. (i) The limit points of the open set |z| < 1 are |z| ≤ 1;
that is, all the points of the set and all the points on the unit circle
|z| = 1. If ∂Δ = {z : |z| = 1} and Δ = {z : |z| ≤ 1}, then all points
of Δ are its limit points and no other point is a limit point of Δ. The
same is true for ∂Δ. On the other hand, all points of Δ \ {0} together
with 0 and the points of ∂Δ are limit points of Δ\{0}. Note that 0 and
the points of ∂Δ are not in Δ \ {0}.

(ii) The set A = {1/n : n ∈ N}, where N = {1, 2, 3, . . . , n, . . . }, has 0 as
a limit point (regardless of whether the set is considered a subset of
the line or the plane) and 0 is not in the set. Similarly, the set A =
{eiπ/n : n ∈ N} has 1 as its only limit point, see Figure 2.3.

(iii) If A consists of the set of points that have both coordinates rational,
then every point in the plane is a limit point of A. •

A set is said to be closed if it contains all of its limit points. The union of
a set A and its limit points is called the closure of A, and is denoted by A.
Some examples of closed sets in the plane are

(a) the empty set,
(b) the set of all complex numbers,
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Figure 2.3. Description of limit point 1 of {eiπ/n : n ∈ N}

(c) {z : |z| ≥ r}, r ≥ 0,
(d) {z : r1 ≤ |z| ≤ r2}, 0 ≤ r1 < r2,
(e) the union of any two closed sets,
(f) the intersections of any collection of closed sets,
(g) {z : |z| ≤ 1}.

Some examples of sets that are not closed in the complex plane C are Δ,
Δ \ {0}, Δ \ {0}. Finally, we remark that the set Δ \ {0} is neither closed nor
open.

Theorem 2.3. If z0 is a limit point of A, then every neighborhood of z0 con-
tains infinitely many points of A.

Proof. Assume that some deleted neighborhood of z0 contains only a fi-
nite number of points of A. Let the points be z1, z2, . . . , zn and ε =
mini=1,2, ... ,n |z0 − zi|. Then N ′(z0; ε) contains no points of A, and z0 can’t be
a limit point of A.

Corollary 2.4. Every finite set is closed.

Proof. The set contains all of its limit points—all “none” of them.

For the set |z| ≤ 1, we would like to distinguish the interior points from
the points on the unit circle. A point z0 is called a boundary point of A if
every neighborhood of z0 contains points in A and points not in A (in the
complement of A). The set of all boundary points of A is called boundary of
A. For example, the circle |z| = 1 is the boundary for both the bounded set
|z| < 1 and the unbounded set |z| > 1.

Remark 2.5. The boundary points determine the “openness” or “closedness”
of a set. An open set cannot contain any of its boundary points, whereas a
closed set must contain all of its boundary points (why?). Clearly, an interior
point of a set A is a limit point of A but a limit point may or may not be an
interior point of A. •
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Figure 2.4. Description between open and connected sets

We would also like to distinguish between the two sets

A = {z : |z| < 1} and B = {z : |z| < 1} ∪ {z : |z − 3| < 1}.

Set A is “all one piece”, while set B consists of two pieces (Figure 2.4). A
set S is said to be connected if there do not exist disjoint open sets U and V
satisfying the following conditions:

(i) U ∪ V ⊃ S, (ii) U ∩ S �= φ, V ∩ S �= φ.

In particular, if an open connected set can be expressed as the disjoint
union of two open sets U and V , then either U = φ or V = φ. Set A above is
connected and set B is not.

An open connected set is called a domain. A region is a domain together
with some, none, or all of its boundary points.1 We might think that the
counterpart of a real-valued function of a real variable being defined on an
open set is a complex-valued function of a complex variable being defined on
an open set. But this is not the case. Actually, the counterpart of an open
interval in R is a domain. Note that an open interval in R is a connected
subset of R. Likewise a domain is open as well as connected. The “negative”
definition for connectedness is sometimes difficult to visualize. But when the
connected set is a domain, we have the following useful property.

Theorem 2.6. Any two points in a domain can be joined by a polygonal line
that lies in the domain.

Proof. Choose a point z0 in the domain D. It suffices to show that every point
in D can be joined to z0 by a polygonal line that lies in D. Let A denote the
set of all points in D that can be so joined to z0 and let B denote all those
points that cannot. Note that A ∪ B = D and A ∩ B = φ. We wish to show
that B is empty.

1 The reader is warned that some authors use the term “region” for what we call
a domain (following the modern terminology), and others make no distinction
between the terms.
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If a point z1 is in A, then z1 is in D. Since D is open, there exists an ε1 > 0
such that N(z1; ε1) ⊂ D. But all the points in N(z1; ε1) can be joined to z1

by a straight line segment. Therefore, each point in N(z1; ε1) must be in A,
which means that A is an open set.

Similarly, if a point z2 is in B, then there exists an ε2 > 0 such that
N(z2; ε2) ⊂ D. All the points in this neighborhood must also lie in B, for if
some point b ∈ N(z2; ε2) could be joined to z0 by a polygonal line, then the
straight line segment from z2 to b could be connected to the polygonal line
from z0 to b in order to form a polygonal line from z0 to z2. Thus B is an
open set. Consequently, neither A nor B can contain any boundary points.
Since D is connected, either A or B must be empty. But z0 ∈ A, so that B is
empty. This completes the proof.

Note that a domain may contain two points that cannot be joined by a
single straight line segment, as is illustrated in Figure 2.5.

Figure 2.5. Connected domains

Remark 2.7. We could have required that the polygonal line of Theorem 2.6
be parallel to the coordinate axes. The only modification in the proof is the
observation that any point in a disk can be joined to the center by combining
a line segment parallel to the x axis with one parallel to the y axis. •

The converse of Theorem 2.6 is also true: if any two points of an open set
can be joined by a polygonal line, then the set is connected. The proof is left
for the exercises. Also, in the exercises an example is given of a connected set,
two of whose points cannot be joined by a polygonal line that lies in the set.

With the above definitions, we are furnished with a method for adequately
characterizing most sets on either the line or the plane.

Examples 2.8. (i) Let A = {z ∈ C : |z| ≤ 1, excluding the points zn =
1/n (n ∈ N)}. Then the set A is not open because the points on the
unit circle have been included and is not closed because the limit points
zn = 1/n (n ∈ N) have been excluded. The set is bounded, connected
and has a boundary consisting of the unit circle, the points zn = 1/n,
and the origin.
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(ii) Let A = {z ∈ C : Re z > 0} ∪ {z : Re z < −2}. This set is open, not
closed, not bounded, and not connected. Its boundary consists of all
points on the lines Re z = 0 and Re z = −2.

(iii) Let A = {z ∈ C : −π/4 ≤ Arg z ≤ π/4}. This set is connected, closed,
not open, and not bounded. Its boundary consists of the origin together
with the rays Arg z = π/4 and Arg z = −π/4. •

Questions 2.9.

1. What alternative definitions of “bounded” might we have used?
2. What can we say about unions and intersections of open and closed

sets?
3. What can we say about the complements of open and closed sets?
4. What sets are open (closed) in both the plane and the line?
5. What sets are both open and closed?
6. Can a set have infinitely many points without having a limit point?
7. What is the relation between the boundary points and limit points?
8. How does the closure of the intersection of two sets compare with the

intersection of their closures?
9. What can you say about intersections and unions of connected sets?

10. What can you say about a set in which every pair of points can be joined
by a straight line segment lying in the set?

11. How does the set described in the previous question compare to a set
in which there exists a point that can be joined to any other point by
a straight line segment lying in the set? What is an example of such a
set?

12. What are the boundary points of a deleted neighborhood of z0?
13. What are the boundary points of the complex plane?

Exercises 2.10.

1. Prove that a neighborhood of a point on the real line (an open interval)
is an open set in R.

2. Show that a set A of complex numbers is bounded if and only if, given
z0 ∈ C, there exists a real number M such that z ∈ N(z0; M) for every
z ∈ A. Can M be chosen independent of z0?

3. Show that a set of complex numbers is bounded if and only if both the
sets of its real and imaginary parts are bounded.

4. Describe the following sets.
(a) {z ∈ C : 1 < |z| < 2, excluding points for which z ∈ R}
(b) {z ∈ C : z = (x, y), x and y are rational}
(c) {x ∈ R : x − irrational}
(d) {x ∈ R : x ∈ Z}
(e) {n ∈ N :

⋃∞
n=1[1/n, n]}

(f) {z ∈ C : |z| > 2, |Arg z| < π/6}
(g) {z ∈ C : |z + 1| < |z − i|}
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(h) {z ∈ C : |z + 1| = |z − i|}
(i) {z ∈ C : |Re z| + |Im z| = 1}.

5. Which of the following subsets are connected?
(a) D = {z ∈ C : |z| < 1} ∪ {z ∈ C : |z + 2| ≤ 1}
(b) D = [0, 2) ∪ {2 + 1/n : n ∈ N}.

6. Prove that the union of an arbitrary collection of open sets is open and
that the intersection of a finite number of open sets is open. Also, show
that ∩∞

n=1{z : |z| < 1/n} is not an open set.
7. Show that a set is open if and only if its complement is closed.
8. Show that the intersection of an arbitrary collection of closed sets is

closed and the union of a finite number of closed sets is closed.
9. Show that the limit points of a set form a closed set.

10. Show that A, the closure of A, is the smallest closed set containing A.
11. Show that a set is connected if any two of its points can be joined by a

polygonal line.
12. Show that if a set A is connected, then A is connected. Is the converse

true?
13. Show that the union of two domains is a domain if and only if they have

a point in common.

2.2 Sequences

A sequence {zn} of complex numbers is formed by assigning to each positive
integer n a complex number zn. The point zn is called the nth term of the
sequence. Care must be taken to distinguish between the terms of the sequence
and the set whose elements are the term of the sequence. For example, the
sequence {2, 2, 2, . . . } has infinitely many terms (as do all sequences), but
the set {2, 2, 2, . . . } contains only one point. In general, when we discuss set-
theoretic properties of a sequence, we will mean the set associated with the
terms of the sequence.

A sequence {zn} is said to have a limit z0 (converge to z0), written

lim
n→∞ zn = z0 or zn → z0,

if for every ε > 0, there exists an integer N (depending on ε) such that |z−z0| <
ε whenever n > N . Geometrically, this means that every neighborhood of z0

contains all but a finite number of terms of sequence (see Figure 2.6). We
must point out that zn → z0 is equivalent to zn − z0 → 0. To illustrate, the
sequence {1/n} converges to 0; but the sequence {(−1)n}, which oscillates
between 1 and −1, does not converge. Examples of convergent sequences that
appear frequently are

(a) lim
n→∞

1
np

= 0 (p > 0)

(b) lim
n→∞ |z|n = 0 (|z| < 1)

(c) lim
n→∞n1/n = 1.
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Figure 2.6. Geometric meaning of a convergence of a sequence

Example 2.11. We can easily see that {1+in}n≥1 does not converge. Indeed,
if zn = 1 + in then, for each fixed k = 0, 1, 2, 3,

z4n+k = 1 + i4n+k = 1 + ik =

⎧⎪⎪⎨
⎪⎪⎩

2 if k = 0
1 + i if k = 1

0 if k = 2
1 − i if k = 3

and so {1 + in} diverges. Also we remark that {1 + in} and {in} diverge or
converge together and so it suffices to deal with {in} which is easier than the
original sequence.

The convergence of the sequence {in/n}n≥1 is easier to convince yourself
of if you draw a figure representing these points. •

There is a nice relationship between the convergence of a sequence of
complex numbers and the convergence of its real and imaginary parts.

Theorem 2.12. Let zn = xn + iyn be a sequence of complex numbers. Then
{zn} converges to a complex number z0 = x0+iy0 if and only if {xn} converges
to x0 and {yn} converges to y0.

Proof. The proof is simply a consequence of the inequalities

|Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|.

To provide a detailed proof, we assume limn→∞ xn = x0 and limn→∞ yn = y0.
Then given ε > 0, there exist an integer N such that n > N implies

|xn − x0| < ε/2, |yn − y0| < ε/2. (2.1)

From (2.1) we obtain

|zn − z0| = |xn − x0 + i(yn − y0)| ≤ |xn − x0| + |yn − y0| < ε,

and {zn} converges to z0. Conversely, if we assume that limn→∞ zn = z0, the
inequalities
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|xn − x0| ≤ |zn − z0|, |yn − y0| ≤ |zn − z0|
show that {xn} and {yn} converge to x0 and y0, respectively.

Theorem 2.12 essentially says that many properties of the complex se-
quences may be deduced from corresponding properties of real sequences. For
example, the uniqueness of the limit of a complex sequence can be derived
either directly or from the uniqueness property of real sequences.

A sequence of complex numbers {zn} is said to be bounded if there exists
an R > 0 such that |zn| < R for all n. In other words, a sequence is said to
be bounded if it is contained in some disk.

Since a convergent sequence eventually clusters about its limit, the next
theorem is not too surprising.

Theorem 2.13. A convergent sequence is bounded.

Proof. If limn→∞ zn = z0, then zn ∈ N(z0; 1) for n > N . Let

M = max{|z1|, |z2|, . . . , |zN |}.

Then, |zn| < M + |z0| + 1 for every n.

The converse of Theorem 2.13 is not true. The sequence {1, 2, 1, 2, . . . } is
bounded and not convergent, although the odd terms and even terms both
form convergent sequences.

A subsequence of a sequence {zn} is a sequence {znk
} whose terms are

selected from the terms of the original sequence and arranged in the same
order. For the sequence zn = (−1)n, we have subsequence {z2k} converging
to 1 and subsequence {z2k−1} converging to −1.

The next theorem shows that a subsequence must be at least as “well
behaved” as the original sequence.

Theorem 2.14. If a sequence {zn} converges to z0, then every subsequence
{znk

} also converges to z0.

Proof. Given ε > 0, we have zn ∈ N(z0; ε) for n > N . Hence znk
∈ N(z0; ε)

for nk > N . Since nk ≥ n (why?), and there can be at most N terms of the
subsequence for which |znk

− z0| ≥ ε.

We know that not all sets are bounded. However, if a set of real numbers
is bounded, it has a “smallest” bound. A real number M is said to be the
least upper bound (lub) of a nonempty set A of real numbers if

(i) x ≤ M for every x ∈ A. That is A is bounded above by M and M is an
upper bound for A.

(ii) For any ε > 0, there exists a y ∈ A such that y > M − ε. That is, M is
the smallest among all the upper bounds of A.

Similarly, the real number m is said to be the greatest lower bound (glb) of a
nonempty set A if:
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(i) x ≥ m for every x ∈ A; That is A is bounded below by m and m is a
lower bound of A.

(ii) For any ε > 0, there exists a y ∈ A such that y < m + ε. That is, m is
the largest among all the lower bounds of A.

The Dedekind property states that every nonempty bounded set of real numbers
has a least upper bound and a greatest lower bound. This is an amplified version
of the result that R is complete. For a proof of this, see [R1].

As we have seen, the converse of Theorem 2.13 (even for real sequences)
is not true. Bounded oscillating sequences need not converge. Eliminating the
oscillation, however, will produce convergence. A real sequence {xn} is said to
be monotonically increasing (decreasing) if xn+1 ≥ xn(xn+1 ≤ xn) for every
n. A sequence will be called monotonic if it is either monotonically increasing
or monotonically decreasing.

Theorem 2.15. Every bounded monotonic sequence of real numbers con-
verges.

Proof. Let the bounded sequence {xn} be monotonically increasing. Accord-
ing to the Dedekind property, there exists a least upper bound of {xn}, call
it x. By the definition of lub, given ε > 0 there exists an integer N such that
xN > x − ε. Since {xn} is monotonically increasing,

x − ε < xn ≤ x for n > N.

Hence |xn−x| < ε for n > N , and {xn} converges to its least upper bound. The
proof for monotonically decreasing sequences is identical, using the greatest
lower bound instead of the least upper bound.

The examples we have seen of bounded sequences that did not converge
did have convergent subsequences. To show that this is true in general, we
need the following

Lemma 2.16. Every sequence of real numbers contains a monotonic subse-
quence.

Proof. Assume that the real sequence {xn} has the property that there are
infinitely many n such that xk ≤ xn for every k ≥ n. Let n1 be the first
such n with this property, n2 the second, etc. Then xn1 , xn2 , xn3 , . . . is a
monotonically decreasing subsequence of {xn}.

On the other hand, if there are only finitely many n such that xk ≤ xn

for every k ≥ n, choose an integer m1 such that no terms of the sequence
xm1 , xm1+1, xm1+2, . . . have this property. Let m2 be the first integer greater
than m1 for which xm2 > xm1 . Continuing the process, we obtain a sequence
xm1 , xm2 , xm3 , . . . which is a monotonically increasing subsequence of {xn}.
This completes the proof.

Although the converse of Theorem 2.13 is not true, here is slightly a weaker
version of it.
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Theorem 2.17. Every bounded sequence of complex numbers contains a con-
vergent subsequence.

Proof. Let zn = xn + iyn, with |zn| ≤ M . Then |xn| ≤ M and |yn| ≤ M .
By Lemma 2.16, {xn} contains a monotonic subsequence {xnk

}. By Theorem
2.15, {xnk

} converges.
Now consider the corresponding subsequence {ynk

} of {yn}. This may not
converge, but by Theorem 2.15, it does contain a convergent subsequence
{ynk(l)}. By Theorem 2.14, {xnk(l)} also converges. Applying Theorem 2.12,
the sequence

znk(l) = xnk(l) + iynk(l)

is a convergent subsequence of {zn}, and this completes the proof.

What are the relationships between the limit of a sequence, the limit points
of a sequence, and lub or glb of a sequence? The lub and glb are meaningless
in the complex number system, although (as we have just seen) these notions
for real numbers may be used to prove theorems about complex numbers. For
the sequence {n/(n + 1)}, 1 is the lub, the limit, and the unique limit point.
If a convergent sequence has only finitely many distinct elements, it will have
no limit points; however, we do have the following theorem.

Theorem 2.18. A point z0 is a limit point of a set A if and only if there is
a sequence of distinct points in A converging to z0.

Proof. If a sequence {zn} of distinct points in A converges to z0, then every
neighborhood of z0 contains all but a finite number (hence infinitely many)
of points of {zn}. Therefore, z0 is a limit point of A.

To prove the converse, let z0 be a limit point of A. For every integer n,
choose a point zn ∈ N(z0; 1/n) ∩ A. Since every neighborhood of A contains
infinitely many distinct points, we may assume the points of the sequence
{zn} to be distinct.

Given ε > 0, choose N such that 1/N < ε. Then zn ∈ N(z0; ε) for n > N ,
and the sequence {zn} converges to z0.

Combining the previous two theorems, we obtain

Theorem 2.19. (Bolzano–Weierstrass)Every bounded infinite set in the com-
plex plane has a limit point.

Proof. Choose any sequence of distinct points in the set. By Theorem 2.17,
this sequence contains a convergent subsequence; and by Theorem 2.18, the
limit of this convergent subsequence is a limit point of the set. This completes
the proof.

A sequence {zn} of complex numbers is said to be a Cauchy sequence if
for every ε > 0, there exists an integer N (depending on ε) such that
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|zm − zn| < ε whenever m, n > N.

What is the difference between a Cauchy sequence and a convergent sequence?
Geometrically, for a convergent sequence, all but a finite number of points are
close to a fixed point (the limit of the sequence), while for a Cauchy sequence
all but a finite number of points are close to each other. We will show, for
complex sequences, that these concepts are equivalent. Moreover, from our
exercises, we see that the algebra of complex sequences is essentially the same
as that for the real sequences studied in real-variable theory.

Theorem 2.20. (Cauchy Criterion)The sequence {zn} converges if and only
if {zn} is a Cauchy sequence.

Proof. Assume {zn} converges to z0. By the triangle inequality,

|zm − zn| = |zm − z0 + z0 − zn| ≤ |zm − z0| + |zn − z0|. (2.2)

Given ε > 0, both terms on the right side of (2.2) can be made less than ε/2
for m,n > N . Hence {zn} is a Cauchy sequence.

Conversely, assume {zn} is a Cauchy sequence. Then for n > N , we have
|zn − zN | < 1. That is,

|zn| < |zN | + 1 for n > N.

Thus {zn} is a bounded sequence. By Theorem 2.17, {zn} contains a subse-
quence {znk

} that converges to a point (say z0).
We will show that {zn} also converges to z0. Once again using the triangle

inequality, we obtain

|zn − z0| = |zn − znk
+ znk

− z0| ≤ |zn − znk
| + |znk

− z0|. (2.3)

Given ε > 0, there exists an integer N such that, for n > N ,{ |zn − znk
| < ε/2 (because {zn} is Cauchy),

|znk
− z0| < ε/2 (because {znk

} converges to z0).
(2.4)

Combining (2.3) and (2.4), we see that |zn − z0| < ε for n > N . Hence, {zn}
converges to z0, and the proof is complete.

Theorem 2.20 furnishes us with a general method for determining the
convergence of a sequence of complex numbers even though we may not know
in advance what its limit is. There are some systems in which not every Cauchy
sequence converges. For instance, in the field of rational numbers, the Cauchy
sequence 1, 1.41, 1.414, . . . does not converge (because

√
2 is not rational). A

system in which every Cauchy sequence converges is said to be complete. In
Sprecher [S], it is shown that the real number system forms the only complete
ordered field.
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Example 2.21. Suppose that z �= 1, but |z| = 1. Then

lim
n→∞

1
n

n∑
k=1

zk = 0.

Indeed, as (1 − z)
∑n

k=1 zk = z(1 − zn), we have∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ =
∣∣∣∣z(1 − zn)

1 − z

∣∣∣∣ ≤ |z|(1 + |z|n)
|1 − z| ≤ 2|z|

|1 − z|

so that

1
n

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ≤ 2
n

{ |z|
|1 − z|

}
→ 0 as n → ∞. •

Questions 2.22.

1. When a sequence {zn} converges to z0, is the limit z0 unique?
2. Let {xn} and {yn} be real sequences. If {(xn + yn)} converges, does

this mean that both {xn} and {yn} converge? How does this question
compare with Theorem 2.12?

3. How many subsequences are there for a given sequence?
4. Can unbounded sequences have limit points? What about monotonic

unbounded sequences?
5. When will the least upper bound of a set be an element of the set?
6. Can a real sequence converge to a value other than lub or glb of the

sequence?
7. Can a sequence have infinitely many limit points?
8. Can you think of a sequence that converges without knowing what its

limit is?
9. How could Theorem 2.18 have been proved without appealing to Theo-

rem 2.3?
10. What can be said of the sequence bn = glb {an, an+1, an+2, . . . }, where

{an} is a real sequence? What if {an} is bounded?
11. Suppose that {zn} converges. Does {|zn|} converge? Does {arg zn} con-

verge? Does {Arg zn} converge?
12. Suppose that both {Arg zn} and {|zn|} converge. Does {zn} converge?

Exercises 2.23.

1. Let {zn} converge to z0 and wn converge to w0. Show that
(a) lim

n→∞(zn + wn) = z0 + w0,

(b) lim
n→∞ znwn = z0w0,

(c) lim
n→∞

zn

wn
=

z0

w0
provided w0 �= 0.
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In particular, if

zn =
1 + n + 2i(n − 1)

n
and wn =

n1/2 + 2i(3 + 4n3)
n3

,

find z0, w0 and z0/w0.
2. Show that no sequence having more than one limit point can converge.
3. If {zn} converges, show that {|zn|} converges. Is the converse true?
4. Which of the following sequences are convergent?

(a) {in}
(b) {zn

0 }, where |z0| < 1

(c)
{

cos n + i sin n

n

}

(d)
{

1 + 1
2 + 1

3 + · · · + 1
n

n

}
(f)

{
enπi/3 +

(
− 1

2 − i
√

3
2

)n}
(g)

{
enπi/6 +

(
− 1

2 + i
√

3
2

)n}
(f)

{
n cos(nπ)

2n+1

}
(i)

{
sin

(
nπ
8

)}
.

5. If {zn}n≥1 converges to 0, prove that { 1
n

∑n
k=1 zk} converges to 0. Then

show that {zn} converging to z0 implies that { 1
n

∑n
k=1 zk} converges to

z0.
6. Give an example of a sequence that

(a) does not converge, but has exactly one limit point;
(b) has n limit points, for any given integer n;
(c) has infinitely many limit points.

7. Prove that the subsequential limits (the limits of all possible subse-
quences) of a sequence {zn} form a closed set.

8. Let {zn} be a sequence having the following property: Given ε > 0,
there exists an integer N such that for n > N , |zn+1 − zn| < ε. Give an
example to show that {zn} need not be a Cauchy sequence.

9. Let sn =
∑n

k=1 1/k!. Use the Cauchy criterion to show that {sn} con-
verges.

2.3 Compactness

The union of the open intervals (n − 1
2 , n + 1

2 ) for n = 1, 2, 3, . . . contains
the set of positive integers. Each interval is important in that the removal
of any one of them will leave a positive integer uncovered. For the bounded
set S = {x ∈ R : 0 < x < 1}, the union of open intervals (1/n, 1) for
n = 2, 3, 4, . . . contains S. While the removal of any one of these intervals
will prevent the union of the remaining intervals from covering S, the set S is
not contained in any finite subcollection of the intervals.
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A set is said to be countable if its elements can be put in a one-to-one
correspondence with a subset of positive integers. A collection {Oα} of open
sets is called an open cover of a set S if S ⊂ ⋃

α Oα. Note that the collection
{Oα} may contain uncountably many sets. A set S is compact if every open
cover of S contains a finite subcover.

We have seen that neither the set of positive integers nor the open interval
(0, 1) is compact. However, any finite set is compact because for any open
cover we have a finite subcover formed by associating with each point one of
the open sets containing the point.

The definition of compactness is not always easy to apply. We would like
to work with a more geometrically intuitive method for determining compact-
ness. To this end we will need the following.

Lemma 2.24. Let {In} be a sequence of closed and bounded intervals on the
real line. If In+1 ⊂ In for every n and the length of In approaches 0 as n → ∞,
then there is exactly one point in common to all In.

Proof. Let In = {x : an ≤ x ≤ bn}. By hypothesis,

an ≤ an+1, bn+1 ≤ bn (n = 1, 2, 3, . . . )

and

lim
n→∞(bn − an) = 0. (2.5)

The sequences {an} and {bn} are both monotonic and bounded (an, bn) ∈
[a1, b1] for every n. By Theorem 2.15 both sequences must converge; and by
(2.5), they must converge to the same point, call it x0. Since x0 = lub {an} =
glb {bn},

x0 ∈ [an, bn] for everyn

(see Figure 2.7). There cannot be another point x1 in all the In. For, if x1 (�=
x0) were less than (resp. greater than) x0, then x0 would not be the lub {an}
(resp. glb {bn}).

Note that Lemma 2.24 is not true if closed is replaced by open. The
collection of intervals {(0, 1/n) : n ∈ N} satisfy the hypotheses, although⋂∞

n=1(0, 1/n) = φ.

Figure 2.7.
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Lemma 2.25. Let {Sn} be a sequence of closed and bounded rectangles in the
plane. If Sn+1 ⊂ Sn for every n and the length of the sides of Sn approaches
0 as n → ∞, then there is exactly one point in common to all the Sn.

Proof. Let {In} and {Jn} be the projections of {Sn} into real and imaginary
axes respectively. Then {In} and {Jn} satisfy the conditions of Lemma 2.24.
If

{x0} = ∩∞
n=1In and {y0} = ∩∞

n=1Jn,

then (see Figure 2.8) {z0} = {(x0, y0)} = ∩∞
n=1Sn.

Figure 2.8.

Theorem 2.26. (Heine–Borel) Every closed and bounded set is compact.

Proof. Let S be a closed and bounded set. Assume {Oα} is an open cover of S
that has no finite subcover. Since S is bounded, it is contained in some square
S0 whose vertices are z = ±a ± ai. The coordinate axes divide S0 into four
equal subsquares. At least one of these squares (call it S1) has the property
that S ∩ S1 cannot be covered by a finite subfamily of {Oα} (why?). We now
divide S1 into four more equal closed subsquares (see Figure 2.9). Again, for
at least one of these squares, denoted by S2, there is no finite subfamily of
{Oα} that covers S ∩ S2.

We can continue the process indefinitely, forming a sequence {Sn} of closed
squares for which there is no finite subfamily of {Oα} that covers S∩Sn. Note
that the length of any side of Sn is a/(2n−1). By Lemma 2.25, there is exactly
one point, denoted by z0, common to all squares Sn. This point z0 must be a
limit point of S, and hence an element of S.

Let Oα0 be an element of the cover {Oα} that contains z0. Since Oα0 is an
open set, N(z0; ε) ⊂ Oα0 for some ε > 0. But Sn ⊂ N(z0; ε) for n sufficiently
large. Thus Sn ∩ S has a finite subcover of {Oα}, namely, one element: Oα0 .
This contradiction, concludes the proof.
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Figure 2.9. Illustration for Heine–Borel theorem

The gist of the above argument is that if no finite subcollection of {Oα}
covers S, then no finite subcollection covers a carefully chosen sequence of
subsets of S. On the other hand, this sequence of subsets can be made small
enough to be contained in one of the open sets of the cover.

We are now ready to collect some of the important results of the last two
sections to obtain the following major theorem.

Theorem 2.27. Let S be a subset of the complex plane C. The following
statements are equivalent:

(i) S is closed and bounded.
(ii) S is compact.
(iii) Every infinite subset of S has a limit point in S.
(iv) Every sequence in S has a subsequence that converges to a point in S.

Proof. The Heine–Borel theorem states that (i) implies (ii). We will show that
(ii) implies (iii), (iii) implies (iv), and (iv) implies (i). Since each statement is
clearly correct if S is a finite set, we may suppose that S is infinite.

Assume that (ii) holds. If A is an infinite subset of S having no limit point
in S, then for every point in S \A we can find a neighborhood containing no
points of A. Furthermore, for every point in A we can find a neighborhood
containing no other points of A. The collection of all such neighborhoods is
an open cover of S for which there is no finite subcover, contradicting the
compactness of S.

Assume (iii) holds. Let {zn} be a sequence of distinct points in S. (Why
is it sufficient to consider only such sequences?) By hypothesis, there exists a
limit point z0 of {zn} with z0 ∈ S. By Theorem 2.18, there is some subsequence
of {zn} converging to z0.

Assume (iv) holds. If S is unbounded, then there exists a sequence of
points {zn} in S such that |zn| > n for every n. Let {znk

} be an arbitrary
subsequence of {zn}. For any point z0 ∈ S, N(z0; 1) can contain no points of
{znk

} for which nk > |z0| + 1. Hence {znk
} cannot converge to any point in
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S, contradicting our assumption: To show that S is closed, let z0 be a limit
point of S. By Theorem 2.18, there is sequence of distinct points {zn} of S
converges to z0. By Theorem 2.14, every subsequence of {zn} converges to z0.
According to (iv), z0 must therefore be in S. This completes the proof.

Compactness is a nice property because reducing an open cover to a finite
subcover often means that only a finite number of points need be considered
in proving that a set has a certain property. For this reason, when we have
compactness, many local properties (properties that hold in a neighborhood
of each point in a set) can be shown to be global or uniform (a property of
the set as a whole).

For example, from the fact that each point may be covered by a bounded
neighborhood, we deduced that a compact set is bounded. Also, if each point
in a compact set is a positive distance from a fixed point, the set itself is a
positive distance from the point (see Exercise 2.29(3)). This, of course, is not
true in general. Each point of the open interval (0, 1) is a positive distance
from 0, but we can not find a positive real number between 0 and the set.

What makes the addition of one or two points so important? Let us com-
pare the open interval (0, 1) with the closed interval [0, 1]. As we saw earlier,⋃∞

n=2(1/n, 1) is an open cover of (0, 1), that has no finite subcover. This cover
does not contain the points {0} and {1}. If these points were added to the set,
intervals like (−ε, ε) and (1 − ε, 1 + ε) would also have to be added to obtain
a cover. But then (−ε, ε), (1 − ε, 1 + ε) and

⋃N
n=2(1/n, 1) for N > 1/ε would

be a finite subcover.

Questions 2.28.

1. What can we say about the finite union (intersection) of compact sets?
2. What can we say about the infinite union (intersection) of compact sets?
3. What can we say about the complement of a compact set?
4. What can we say about Cauchy sequences in compact sets?
5. When can we say that every subset of a compact set is compact?
6. We have seen that the removal of one point from a set may destroy

the compactness. How many points may be added to a set to destroy
compactness?

7. What kind of generalizations to Lemma 2.25 might we have for compact
sets?

8. Can we talk about “infinity” being a limit point?

Exercises 2.29.

1. Show that the union of any bounded set and its limit points is a compact
set.

2. Show that a compact set of real numbers contains its greatest lower
bound and its least upper bound. Can this occur for a set of real numbers
that is not compact?
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3. If S is compact and z0 �∈ S, prove that glb z∈S |z − z0| > 0.
4. If {Sn} is a sequence of nonempty compact sets with Sn+1 ⊂ Sn for

every n, show that
⋂∞

n=1 Sn �= φ.
5. In Theorem 2.27, prove as many different implications as you can.
6. Show that the set of rational numbers are countable.
7. Show that any open cover of a subset of the plane has a countable

subcover.

2.4 Stereographic Projection

Thus far, infinite limits have been carefully avoided. Consider the three real
sequences:

an = n, bn =
{

n if n is odd
1 if n is even , cn = (−1)nn.

Even though all three sequences grow arbitrarily large, we do not want to
say they all approach infinity. From our knowledge of finite limits, it seems
appropriate that {an} should approach infinity and that {bn} should not, since
a subsequence of {bn} converges to 1. A case for {cn} can be made either way.
The standard approach is to introduce the symbols ±∞, and adjoin them to
the real numbers. The set R∞ := R ∪ {+∞,−∞} is known as the extended
real number system. In the extended real number system, we use the following
conventions: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

±∞ + a = ±∞ = a ±∞ for a ∈ R

∞ · a = a · ∞ = ∞ for a ∈ R∞ \{0}
a

∞ = 0 for a ∈ R \{0}
a

0
= ∞ for a ∈ R∞ \{0}.

The expressions ∞ + ∞ = ∞, −∞ − ∞ = −∞ hold while ∞ − ∞ is not
defined. In the extended real number system, {cn} does not converge because
{c2n} approaches +∞ and {c2n+1} approaches to −∞.

A perfectly logical, if somewhat unusual, approach is to adjoin only one
point, ∞, to R. We then say that a sequence {an} approaches ∞, written
limn→∞ an = ∞, if, for any preassigned real number M , all but a finite number
of terms lie outside the interval (−M, M). According to this definition, the
sequence {(−1)nn} does approach ∞.

This latter approach can be thought to arise from the former by grabbing
the two points −∞ and +∞ (with two very long arms) and bringing them
together. The real number line is then transformed into a circle. We now make
this geometric notion more precise. Consider the unit circle x2 + y2 = 1. For
any real number a, draw the straight line joining the points (a, 0) and (0, 1).
This line intersects the unit circle at (0, 1) and one other point (x1, y1), which
we identify with the real number a. For example, points in the open interval
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(−1, 1) are identified with points in the lower half of the circle, the points −1
and 1 are identified with themselves, and the points outside the interval [−1, 1]
are identified with points in the upper half of the circle (see Figure 2.10).

Figure 2.10. Illustration for the existence of +∞ and −∞ in R

Observe that points close to one another on the real line are always iden-
tified with points close to one another on the circle. The converse is not true.
Points “far out” in the positive and negative directions are identified with
points close to one another on the unit circle. In fact, the greater the absolute
value of a real number the closer is its identification with a point near (0, 1),
the only point on the unit circle not identified with a real number. For this
reason, we identify the point (0, 1) with the point ∞. This provide us with a
one-to-one correspondence between points in the set R ∪ {∞} and the points
on the unit circle. Since the set of real numbers is not compact, the identifi-
cation of R∪{∞} with (compact) circle is called a one-point compactification
of the real numbers.

Was the elimination of −∞ worth all this effort? Not really. In fact, it
is actually useful for −∞ to mean “less than any real number”. The set
R ∪ {∞} was introduced in order to properly motivate our study of the
extended complex plane. Consider the complex sequence {zn} defined by
zn = n(cos θ + i sin θ), where 0 ≤ θ ≤ 2π. For each different value of θ,
{zn} approaches ∞ along a different ray. Furthermore, since the complex
numbers are not ordered, the symbol −∞ would have no more meaning than
the symbol i∞.

In the case of complex numbers, by an M neighborhood of ∞, denoted by
N(∞;M), we mean the set of all points whose absolute value is greater than
M . That is the exterior of the disk with radius M and center at the origin.
The sequence {zn} is said to approach ∞ if for any M > 0, zn ∈ N(∞;M)
for all but a finite number of n.

If we adjoin the point at ∞ to the set of complex numbers, we obtain
the extended complex number system. Sometimes C is referred to as the finite
complex plane and is designated also by |z| < ∞. Then C ∪ {∞} := C∞ is
called the extended complex plane. Note that the extended complex number
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system is conceptually different from the extended real number system, in
which two points (+∞ and −∞) are added. We first make the following
algebraic rules as definitions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞± z = ∞ = z ±∞ for z ∈ C

∞ · z = z · ∞ = ∞ for z ∈ C∞ \{0}
z

∞ = 0 for z ∈ C \{0}
z

0
= ∞ for z ∈ C∞ \{0}.

There is a difficulty in assigning meaning to the expressions ∞ + ∞, ∞−∞
∞/∞, ∞ · 0 and 0/0 and so none of these expressions has meaning in C∞.
The one-point compactification, C∞ := C ∪ {∞}, of the plane has geometric
model similar to that of the one-point compactification of the line, with the
unit circle being replaced by the unit sphere

S = {(x, y, z) : x2 + y2 + u2 = 1}

in the 3-dimensional Euclidean sphere in R3.
Identify the complex number a+ ib with the point (a, b, 0) in R3. By doing

so, we are free to imagine C as an object sitting inside R3 as xy plane. Having
made this identification, for every number a+ib in the complex plane, draw the
straight line in R3 connecting the points (a, b, 0) and (0, 0, 1). This line inter-
sects the sphere x2 +y2 +u2 = 1 at (0, 0, 1) and at one other point (x1, y1, u1).
The projection from the point (0, 0, 1) on the sphere to the point (a, b, 0) in
the complex plane is called a stereographic projection (see Figure 2.11). The
sphere S is called the Riemann sphere.

Figure 2.11. Stereographic projection

This one-to-one correspondence covers all points in the finite complex
plane and all points in the sphere except (0, 0, 1). The point at ∞ in the
extended complex- number system is identified with the point (0, 0, 1), some-
times called the north pole. Note that a neighborhood of ∞ in the complex
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plane corresponds to the interior of an arctic circle whose center is the north
pole.

To find specifically the point (x1, y1, u1) on the sphere identified with the
point (a, b, 0), observe that the three points

(0, 0, 1), (x1, y1, u1), and (a, b, 0)

are collinear. Hence,

x1 − 0
a

=
y1 − 0

b
=

u1 − 1
−1

= t (2.6)

for some real scaler t. But

x2
1 + y2

1 + u2
1 = (at)2 + (bt)2 + (1 − t)2 = 1, i.e., (a2 + b2 + 1)t2 = 2t.

Solving for t, we obtain

t =
2

a2 + b2 + 1
= 1 − u1

as t = 0 corresponds to (0, 0, 1), the north pole. In view of (2.6), the complex
number a + ib is then identified with the point

(x1, y1, u1) =
(

2a

a2 + b2 + 1
,

2b

a2 + b2 + 1
,
a2 + b2 − 1
a2 + b2 + 1

)
. (2.7)

Rewriting (2.7), we identify the complex number z = x + iy with the point
on the sphere (

2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
.

From the second formula for t and (2.6), we conclude that

a =
x1

1 − u1
and b =

y1

1 − u1
.

Consequently, we identify the point (x, y, u) in S \{(0, 0, 1)} with the complex
number in the plane (

x

1 − u

)
+ i

(
y

1 − u

)
.

For instance the points, z = 0 and z = 1−i correspond to the points (0, 0,−1)
and (2/3,−2/3, 1/3), respectively.

Questions 2.30.

1. Which theorems for finite limit remain true for infinite limits?
2. What is the relationship between unbounded sets and neighborhoods of

∞?
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3. How might we define ∞ to be a limit point of a sequence?
4. What might the symbol “i∞” mean?
5. What might the symbol “−i∞” mean?
6. What happens to the points on the unit circle in the complex plane

under stereographic projection?
7. Could we have identified the complex plane with a different sphere?
8. What would be a one-point compactification of Rn?
9. How are the images on the Riemann sphere of z and z related?

10. How are the images on the Riemann sphere of z and −z related? How
about for z and −z?

11. What is the image of the line x + y = 1 in the complex plane, on the
Riemann sphere?

Exercises 2.31.

1. Show that a sequence having a finite limit point cannot approach ∞.
2. If {zn} approaches ∞ and {wn} is bounded, show that {(zn + wn)}

approaches ∞.
3. Show that {zn} approaches ∞ if and only if {|zn|} approaches ∞.
4. Given a point (x1, y1, u1) on the unit sphere, find its corresponding point

in the complex plane.
5. Show that a circle on the sphere that does not pass through the north

pole corresponds to a circle in the complex plane.
6. Show that a circle on the sphere passing through the north pole corre-

sponds to a straight line in the complex plane.
7. Show that we may identify, by stereographic projection, the complex

plane with the sphere x2 + y2 + (u − 1
2 )2 = (1

2 )2.
8. Consider two antipodal points (x, y, u) and (−x,−y,−u) on the Rie-

mann sphere. Show that their stereographic projections z and z′ are
related by zz′ = −1. Give a geometric interpretation.

9. Show that the image of the circle |z| =
√

3 under the stereographic
projection is the set of all points (x1, y1, u1) in the sphere described by
x2

1 + y2
1 = 3/4 and u1 = 1/2.

2.5 Continuity

A (single-valued) function or mapping f from a set A into a set B, written
f : A → B, is a rule that associates with each element x of A a unique
element f(x), the value of f at x, of B. The set A is called the preimage (or
the domain set) of f and the subset of B associated with the element of A
is called the image of f and is denoted by f(A), i.e. f(A) = {f(x) : x ∈ A}.
If the set B, called the range of the function, is equal to f(A), the function is
said to be onto. If no two elements of A are mapped onto the same element
in B, the function is said to be one-to-one on A. By f(a) = b, we will mean
that the element a ∈ A is mapped onto the element of b ∈ B.



2.5 Continuity 49

For each b ∈ B, we define f−1(b) to be the set of elements in A whose
image is b. Note that f−1(b) may be empty if f is not onto. However, if f is
one-to-one and onto, f−1 : B → A is also a one-to-one and onto function,
called the inverse function of f .

Example 2.32. The function w = f(z) = az + b, a �= 0, is one-to-one in
C and the inverse function is defined by z = (w − b)/a. Note that both are
defined in the whole plane C.

On the other hand, the function f defined by f(z) = z + 3z2 is not one-
to-one in |z| < 1. For,

z1 + 3z2
1 = z2 + 3z2

2 =⇒ (z1 − z2) = 3(z2 − z1)(z1 + z2)

which implies (z1 − z2)[1 + 3(z1 + z2)] = 0 and we see that the last equality
is true when z1 + z2 = −1/3. But there are many points z1, z2 ∈ Δ such that
z1 + z2 = −1/3. However, this function is one-to-one in |z| < 1/6. •

We have tacitly been dealing with functions. For example, a sequence of
real numbers is a function f : N → R and a sequence of complex numbers is
a function f : N → C, where N is the set of positive integers. In stereographic
projection, a one-to-one function was found that mapped the extended com-
plex plane onto the unit sphere. The reader (hopefully) is familiar with some
of the properties of real-valued functions of a real variable, i.e., functions map-
ping sets of real numbers onto sets of real numbers. For example, the function
y = f(x) = x2, mapping the real variable x onto the real variable x2, takes
the set of real numbers onto the set of nonnegative real numbers, the closed
interval [0, 1] onto itself, and so on.

Remark 2.33. Strictly speaking, f stands for the function and f(x) for the
value of the function at the point x. However, when there is no ambiguity, we
will sometimes use the time-honored notational abuse of referring to f(x) as
a function.

For z = x + iy, the complex-valued function f(z) can be viewed as a
function of the complex variable z or as a function of two real variables x and
y. •

For example, the function f(z) = z2 may be expressed as

w = f(z) = f(x, y) = (x + iy)2 = x2 − y2 + i(2xy),

where

Re f(z) = u(x, y) = x2 − y2 and Im f(z) = v(x, y) = 2xy.

For this function, the points (2, 1), (1, 2), and (3,−1) are mapped onto the
points (3, 4), (−3, 4), and (8,−6) respectively.

Just as a real-valued function of a real variable may be viewed as a mapping
from the x axis to the y axis, so may a complex-valued function of a complex
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Figure 2.12. Concept of continuity at z0

variable be viewed as a mapping from the xy plane (z plane) to the uv plane
(w plane). While the y axis may be placed vertically on the x axis to obtain a
complete two-dimensional picture of the real-valued function y = f(x), the z
plane and w plane must stay apart, at least in this three-dimensional world.
In this book, we mostly deal with functions f : A → C where A is a subset
of C.

In Chapter 3, we will be concerned with functions that map certain regions
in the z plane onto certain regions in the w plane. Right now we have the
more modest task of determining a class of functions that map points near
one another in the z plane onto points near one another in the w plane.

A function f(z), defined in a domain D, is said to be continuous at a point
z0 ∈ D if for every ε > 0, there exists a δ > 0 (δ depending on ε and z0) such
that

|f(z) − f(z0)| < ε, whenever |z − z0| < δ. (2.8)

Geometrically, this means that, for every neighborhood of f(z0) in the w
plane, there corresponds a neighborhood of z0 in the z plane whose image is
contained in the neighborhood of f(z0). More formally, for every ε > 0, there
exists a δ > 0 such that

f(N(z0; δ)) ⊂ N(f(z0); ε) (2.9)

(see Figure 2.12). If a function is continuous at every point of D, the function is
said to be continuous in the domain D. A function f : A → C is discontinuous
(or has a discontinuity) at z0 if z0 ∈ A, yet f is not continuous at z = z0.

Remark 2.34. We will use (2.8) and (2.9) interchangeably. The reader should
convince himself of their equivalence and strive to be equally proficient with
both.

Also, we will have occasion to discuss the continuity of a function in a
region R that includes boundary points. By an ε neighborhood of a boundary
point z0 ∈ R, we will mean N(z0; ε)∩R, and will call this an open set relative
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Figure 2.13. ε-neighborhood of a boundary point

to the region R. See Figure 2.13 for an ε neighborhood of a boundary point
of the closed unit disk |z| ≤ 1. •

If f(z) is continuous at z0, we write limz→z0 f(z) = f(z0). A function may
have a limit at a point without being continuous at the point. We say that
limz→z0 f(z) = L if for every neighborhood of L, there is a deleted neighbor-
hood of z0 whose image is contained in the neighborhood of L. If L = f(z0),
the function is continuous at z0 and the word “deleted” may be deleted from
this definition.

Examples 2.35. (i) Let

f(z) =
{

z2 if z �= 2,
5 if z = 2.

For this function, limz→2 f(z) = 4 although the function is not contin-
uous at z = 2.

(ii) Let

f(z) =

⎧⎨
⎩

z − 2
z2 − 4

if z �= 2,

4 if z = 2.

Then limz→2 f(z) = limz→2 1/(z + 2) = 1/4 = L. Here L �= f(2). Hence
f has a limit as z → 2 but is not continuous at z = 2.

(iii) If limz→a f(z) = L, then for a given ε > 0 there exists δ > 0 such that

| |f(z)| − |L| | ≤ |f(z) − L| < ε whenever 0 < |z − a| < δ

and therefore,
lim
z→a

|f(z)| = |L|.

Clearly, if L = 0, limz→a |f(z)| = |L| iff limz→a f(z) = L. What happens
if L �= 0? More precisely, if limz→a |f(z)| = L′, then is it always the
case that limz→a f(z) exists? Remember that if limz→a f(z) = L, then
|L| = L′ and therefore, we have to examine when equality holds in
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| |f(z)| − L′| = | |f(z)| − |L| | ≤ |f(z) − L|.

Equality would imply that

Re (f(z)L) = |f(z)| |L| or |f(z)| = Re
(

f(z)
L

|L|

)
= Re (eiθf(z))

where θ = Arg (L/|L|), or equivalently,

|eiθf(z)| = Re (eiθf(z))

so that eiθf(z) is real and nonnegative which is impossible for a general
complex-valued function f(z). However, this is possible when f(z) = L′

or f(z) is a real-valued function with constant sign.
(iv) The signum function sgn on C is defined by

sgn (z) :=

⎧⎨
⎩

|z|
z

for z �= 0

0 for z = 0
=

⎧⎨
⎩

z

|z| for z �= 0

0 for z = 0.

This function is clearly continuous on C \{0} and

|sgn (z)| =
{

1 for z �= 0
0 for z = 0.

•
A point z0 in a set D ⊆ C that is not a limit point of D is called an

isolated point of D. Clearly, at an isolated point z0, there exists a δ > 0 such
that N(z0; δ) ∩ D = {z0}. A function f : D → C is obviously continuous at
all isolated points of D. For example, consider

f(z) =
{

z for z ∈ {1 − 1/n : n = 1, 2, . . . }
1 for z = 1

and let D = {1 − 1
n : n = 1, 2, . . . } ∪ {1}. The only limit point of D is 1 and

so all other points of D are isolated. Since

lim
z→1

f(z) = f(1) = 1,

f is continuous at z = 1. By definition, f is obviously continuous at the
isolated points z = 1 − 1/n, n = 1, 2, . . . . Thus, f is continuous on D.

What is the relationship between limits of sequences and limits of more
general functions? A complex sequences {zn}n≥1, which defines a mapping
f : N → C, converges to z0 if for every ε > 0, there exists an M > 0 such that

f(N(∞;M) ∩ N) ⊂ N(z0; ε).

Recall that a real M neighborhood of ∞ is the set of points outside the interval
(−M, M).
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If the preimage of f is an unbounded region instead of the set of positive
integers, we have the following analog: Let f : C → C. Then limz→∞ f(z) = L
if for ε > 0, there exists an M > 0 with f(N(∞;M)) ⊂ N(L; ε).

Even if our region is bounded, there are important similarities between
limits of the sequences and limits of more general functions. A sequence has
a limit if eventually its points are “close” to one another, while a function
of a complex variable has a limit if closeness of points in different planes
is preserved. Our next theorem shows that continuity may be viewed as an
operation that preserves convergence of sequences.

Theorem 2.36. The function f(z), defined in a region R, is continuous at a
point z0 ∈ R if and only if, for every sequence {zn} in R converging to z0, the
sequence {f(zn)} converges to f(z0).

Proof. Let f(z) be continuous at z0. Then, for every ε > 0, there exists a δ > 0
such that |f(z) − f(z0)| < ε whenever |z − z0| < δ (z ∈ R). If {zn} converges
to z0, then |zn − z0| < δ for n > N . By continuity, |f(zn) − f(z0)| < ε for
n > N . Since ε was arbitrary, the sequence {f(zn)} converges to f(z0).

Conversely, suppose that f(z) is not continuous at z0. Now discontinuity
of f at z0 means that (see (2.9)) for some ε > 0, N(f(z0); ε) does not contain
the image of any neighborhood of z0. This means that we can find a sequence
of points {zn} such that zn ∈ N(z0; 1/n) ∩ R and f(zn) �∈ N(f(z0); ε). As
|zn − z0| < 1/n for all n, the sequence {zn} converges to z0 although the
sequence {f(zn)} does not converge to f(z0). This contradiction completes
the proof.

Remark 2.37. Theorem 2.36 is equally valid for real-valued functions of a
real variable. •

Let f be a continuous function defined in a region A. What properties
of A are inherited by its image f(A)? Theorem 2.36 states that convergent
sequences in A give rise to convergent sequences in f(A). But many properties,
even for real-valued functions of a real variable, are not preserved under a
continuous map.

Examples 2.38. (i) The function f(z) = |z| maps the plane onto the real
interval [0,∞). This shows that the continuous image of an open set
need not be open. We then say that f is not an open map.

(ii) The function f(x) = tan−1 x maps the real line onto (−π/2, π/2). This
shows that the continuous image of a closed set need not be closed.

(iii) The function f(z) = 1/z maps the punctured disk 0 < |z| < 1 onto
the exterior of the unit disk. This shows that the continuous image of a
bounded set need not be bounded. •

But all is not lost. If we combine the “nice” properties of the last two
examples, the image must also be “nice”.
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Theorem 2.39. The continuous image of a compact set is compact.

Proof. Let f : A → f(A) be continuous on the compact set A. For any
sequence {wn} in f(A), we can find a corresponding sequence {zn} in A such
that f(zn) = wn. By Theorem 2.27, there exists a subsequence {znk

} that
converges to a point z0 ∈ A. By Theorem 2.36, f(znk

) = wnk
converges to a

point f(z0) ∈ f(A). Since {wn} was arbitrary, every sequence in f(A) has a
subsequence that converges in f(A). Hence f(A) must be a compact set.

A function f is said to be locally constant if for each a ∈ D there exists a
neighborhood N(a; δ) of a on which f(z) = f(a) for all z.

Theorem 2.40. If a continuous function on a connected set D is locally con-
stant, then f is constant throughout.

Proof. Let a be such that f(a) = b. Define

S = {z : f(z) = b} = f−1(b).

Now S is open because f is locally continuous. But S is closed because the
singleton set {b} is closed. Since S is not empty, we must have D = S. This
completes the proof.

Because the complex field is not ordered, it makes no sense to talk about
maximum and minimum values for a complex-valued function f(z). However,
the next best thing is a discussion of maxima and minima for the related real-
valued function |f(z)|. It will be helpful to observe that |f(z)| is continuous
in any region where f(z) is continuous. This follows from the inequality

| |f(z2)| − |f(z1)| | ≤ |f(z2) − f(z1)| (z1, z2 ∈ C).

Theorem 2.41. If f(z) is continuous on a compact set E, then |f(z)| attains
a maximum and minimum on E.

Proof. According to Theorem 2.39, the image of E under |f(z)|, which we shall
denote by E′, is a compact set. Since E′ is a bounded set of real numbers, it
has a least upper bound b. As a consequence of Exercise 2.29(2), the point b
is in the set E′. But this means that |f(z0)| = b for some z0 ∈ E.

The proof that |f(z)| attains its minimum is similar, with greatest lower
bound being substituted for least upper bound.

A function f(z) is said to uniformly continuous in a region R if for every
ε > 0, there exists a δ > 0 (δ depending only on ε) such that if z1, z2 ∈ R and
|z1 − z2| < δ, then |f(z1)− f(z2)| < ε. This differs from continuity in a region
in that the same δ may be used for every point in the region.

For example, the function f(z) = z is uniformly continuous in every region,
since we may always choose δ = ε.
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Examples 2.42. The function f(z) = 1/z, although continuous, is not uni-
formly continuous in the region 0 < |z| < 1.

To see this, assume that f(z) is uniformly continuous. Then for ε > 0 there
exists a δ, 0 < δ < 1, to satisfy the conditions of the definition. We exploit
the sensitivity of this function near the origin. Let z1 = δ and z2 = δ/(1 + ε).
Then |z1 − z2| = δε/(1 + ε) < δ, but

|f(z1) − f(z2)| =
∣∣∣∣1δ − 1 + ε

δ

∣∣∣∣ =
ε

δ
> ε,

showing that f is not uniformly continuous on the punctured unit disk.
Here is another example. The function f(z) = z2 is not uniformly contin-

uous in the complex plane C.
Again, assume the contrary and let ε > 0 be given. Then for any δ > 0,

choose
z1 = 1/δ and z2 = 1/δ + δ/(1 + ε).

Then, we have |z1 − z2| = δ/(1 + ε) < δ and

|z2
1 − z2

2 | = 2/(1 + ε) + δ2/(1 + ε)2 > 2/(1 + ε).

Note that this function is uniformly continuous in any bounded region. •
Example 2.43. Consider f(z) = x2 − iy2. Clearly f is continuous on C. But
f is not uniformly continuous on C, whereas it is uniformly continuous for
|z| < R. To verify the second part we first note that, for z = x + iy and
z0 = x0 + iy0,

|f(z) − f(z0)| = |(x + x0)(x − x0) − i(y + y0)(y − y0)|
≤ |x + x0| |x − x0| + |y + y0| |y − y0|.

If z, z0 are in the disk |z| < R, then |x + x0| < 2R and |y + y0| < 2R. This
implies that

|f(z) − f(z0)| ≤ 2R[|x − x0| + |y − y0|] ≤ 2
√

2R|z − z0|

(since |x| + |y| ≤
√

2|z|). Now, given any ε > 0, there exists a δ = ε/(2
√

2R)
such that

|f(z) − f(z0)| < ε whenever |z − z0| < δ =
ε

2
√

2R
.

So, f is uniformly continuous on ΔR.
The first part may now be verified as in the previous two examples, and

so we leave this part as a simple exercise. •
Theorem 2.44. If f(z) is continuous on a compact set A, then f(z) is uni-
formly continuous on A.



56 2 Topological and Analytic Preliminaries

Proof. Let ε > 0 be given. Then, for each point zα ∈ A, there is a neighbor-
hood (depending on ε and zα) such that

|f(z) − f(zα)| <
ε

2
(2.10)

whenever |z−zα| < δα, z ∈ A. The collection of all neighborhoods of the form
N(zα; δα/2) is a cover of A. By the compactness of A, there exists a finite
subcover, say

A ⊂
n⋃

k=1

N

(
zk;

δk

2

)
. (2.11)

Choose

δ = min
{

δ1

2
,
δ2

2
, . . . ,

δn

2

}
.

We wish to show that this δ will work for the whole set A.
Let w1 and w2 be any two points in A such that |w1 −w2| < δ. By (2.11),

w1 ∈ N(zk; δk/2) for some k. According to (2.10), it follows that

|f(w1) − f(zk)| <
ε

2
. (2.12)

But we also have

|w2 − zk| ≤ |w2 − w1| + |w1 − zk| < δ +
δk

2
<

δk

2
+

δk

2
= δk.

Hence w2 ∈ N(zk; δk) ∩ A and

|f(w2) − f(zk)| <
ε

2
. (2.13)

Combining (2.12)and (2.13) we obtain

|f(w1) − f(w2)| ≤ |f(w1) − f(zk)| + |f(zk) − f(w2)| <
ε

2
+

ε

2
= ε,

and this completes the proof.

We end the section with a remark on stereographic projection discussed in
the previous section. If π : S \ {(0, 0, 1)} → C is a function, then, according
to the rule of correspondence,

π(x, y, u) =
(

x

1 − u
,

y

1 − u
, 0

)
=

(
x

1 − u

)
+ i

(
y

1 − u

)

and π has an inverse function π−1 : C → S \ {(0, 0, 1)} with the rule of
correspondence
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π−1(z) =
(

2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
.

Thus, we have established the one-to-one correspondence between the
Riemann sphere minus the north pole, namely S \ {(0, 0, 1)}, and C. From
these two formulas, it is evident that π and π−1 are continuous functions.
In other words, the mapping π defined above is a homeomorphism, i.e., π is
one-to-one onto, with both π and π−1 continuous. By allowing (0, 0, 1) to map
onto the point at infinity, it is evident that π maps S one-to-one onto C∞.
Moreover, if s1 = (x1, y1, u1) and s2 = (x2, y2, u2) are two points in S, then
we define the distance function d : R3 × R3 → R by the Euclidean distance

d(s1, s2) = |(x1, y1, u1) − (x2, y2, u2)|
=

√
(x1 − x2)2 + (y1 − y2)2 + (u1 − u2)2 .

Suppose now that s1, s2 are the images under the stereographic projection of
z1 = x1 + iy1 and z2 = x2 + iy2 and define χ : C∞ × C∞ → R by

χ(z1, z2) = d(s1, s2).

Then it is easy to verify that χ is a metric on C∪{∞}. We call χ the chordal
metric on C ∪ {∞} and (C∞, χ) the extended complex plane which is indeed
isometric (i.e., distance preserveness) with (S, d). A straightforward exercise
shows that the chordal distance is

χ(z1, z2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

if z1, z2 ∈ C

2√
1 + |z1|2

if z1 ∈ C, z2 = ∞

0 if z1 = ∞, z2 = ∞.

Let us see what the open disks look like that are centered at the point at
infinity. A deleted ε-neighborhood of ∞ in (C∞, χ) has the form

Nχ(∞; ε) = {z : χ(z,∞) < ε}.

According to the above formula

χ(z,∞) < ε ⇐⇒ (1 + |z|2)−1/2 < ε/2 ⇐⇒ 1 + |z|2 > (2/ε)2.

Assuming ε < 2, this means |z| >
√

(2/ε)2 − 1. This shows that a deleted
neighborhood of ∞ in C∞ is of the form

N ′
χ(∞;R) = {z ∈ C : |z| > R}, R > 0.

Note that if ε ≥ 2, Nχ(∞; ε) = C∞.
Finally, we now briefly indicate certain concepts associated with (C∞, χ).

A sequence {zn} in C converges to ∞ in (C∞, χ) if and only if given R > 0
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there exists an index N = N(R) such that |z| > R for all n ≥ N . Similarly, if
f : A → C and z0 ∈ C is a limit point of A, then limz→z0 f(z) = ∞ iff given
R > 0 there exists a δ > 0 such that |f(z)| > R whenever 0 < |z − z0| < δ
and z ∈ A. If ∞ is a limit point of A, then limz→∞ f(z) = L iff given ε > 0
there exists an R > 0 such that |f(z) − L| < ε whenever |z| > R and z ∈ A.

Questions 2.45.

1. What ambiguities might there be if we called the preimage the domain
of the function?

2. What is the geometric significance of a complex-valued function of a
real variable? A real-valued function of a complex variable?

3. What properties do functions and their inverses have in common?
4. For what kinds of functions will we have points closer (more distant) in

the w plane than in the z plane?
5. What can we say about the continuity of sequences?
6. Can we talk about a function being continuous at ∞?
7. What can we say about the continuous image of a limit point of a set?
8. How do the proofs of Theorem 2.36 and Theorem 2.18 compare?
9. What is the largest region on which f(z) = 1/z is uniformly continuous?

10. Can discontinuous functions map compact sets onto compact sets?
11. If a function is uniformly continuous on a set A, is it also uniformly

continuous on every subset of A?
12. How can you define a piecewise continuous real-valued function of a real

variable defined on an interval [a, b]?
13. How can you define a piecewise continuous complex function of a real

variable defined on an interval [a, b]?
14. Are piecewise continuous real-valued functions of a real variable defined

on an interval [a, b] integrable and bounded?
15. Does f(z) = arg z define a complex function? How about

f(z) = cos(arg z) + i sin(arg z)?

Exercises 2.46.

1. Find the following limits when they exist:

(a) lim
z→3i

z2 + 9
z − 3i

(b) lim
z→2i

z + z2

1 − z

(c) lim
z→∞

z + 1
z2

(d) lim
z→∞

z2 + 10z + 2
2z2 − 11z − 6

(e) lim
z→3i

z3 + 27i
z2 + 9

(f) lim
z→1

1 − zn

z2 + 5z − 6
(n ≥ 1)
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2. Discuss continuity and uniform continuity for the following functions.

(a) f(z) =
1

1 − z
(|z| < 1) (b) f(z) =

1
z

(|z| ≥ 1)

(c) f(z) =

{ |z|
z

if 0 < |z| ≤ 1

0 if z = 0
(d) f(z) =

{ Re z

z
if 0 < |z| < 1

1 if z = 0.

3. Prove that f(z) = 1/(1 − z) is not uniformly continuous for |z| < 1.
4. Show that the function f(z) = 1/z2 is not uniformly continuous for

0 < Re z < 1/2 but is uniformly continuous for 1/2 < Re z < 1.
5. Let f(z) be one of the following functions each being defined in the

punctured plane C \ {0}:

Re z

z
,

Im z

z
,

z

|z| ,
z

z
,

|z|
z

,
z

z
.

Is it possible to suitably define any one of the these functions at z = 0
so that the resulting function will become continuous at z = 0. Answer
the same question for the functions

zRe z

|z| and
zIm z

|z| .

How about for the functions
z

Re z
and

z

Im z

when it is defined for C \ {x + iy : x �= 0} and C \ {x + iy : y �= 0},
respectively?

6. Discuss continuity of

f(z) =

⎧⎨
⎩

(Re z)2 (Im z)
|z|2 if z �= 0

0 if z = 0

at the all points of C.
7. Find the following limits:

(a) lim
z→0

f(z), where f(z) =
xy

x2 + y2
+ 2xi,

(b) lim
z→0

f(z), where f(z) =
xy

x2 + y
+ 2

x

y
i,

(c) lim
z→0

f(z), where f(z) =
xy3

x3 + y3
+

x8

y2 + 1
i.

8. If limz→∞ f(z) = a, and f(z) is defined for every positive integer n,
prove that limn→∞ f(n) = a. Give an example to show that the converse
is false.
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9. Show that a monotonic real-valued function of a real variable cannot
have uncountably many discontinuities.

10. Show that f : A → B is continuous if and only if for every open set O
relative to B, f−1(O) is an open set relative to A.

11. Using Exercise 2.46(10), prove that the continuous image of a compact
set is compact.

12. Show that f : A → B is continuous if and only if for every closed set F
relative to B, f−1(F ) is a closed set relative to A.

13. Prove that continuous image of a connected set is connected.
14. If a function, defined on a compact set, is continuous, one-to-one, and

onto, show that the inverse function also has these properties. Can com-
pactness be omitted?

15. Let f and g be continuous on a set A. Show that f + g, f · g, and
f/g (g �= 0) are also continuous on A. What can we say if f and g are
uniformly continuous on A?

16. Show that f(z) is continuous in a region R if and only if both Re f(z)
and Im f(z) are continuous in R.

17. Show that every polynomial is continuous in the complex plane.
18. Let f(z) be continuous in the complex plane. Let A = {z ∈ C : f(z) =

0}. Show that A is a closed set.

19. Show that lim
z→4

1
z − 4

= ∞ and lim
z→∞

1
z2 + 2

= 0.

20. Suppose that J : C∞ → C∞ is defined by J(z) = 1/z, z ∈ C∞. Do our
conventions imply J(0) = ∞ and J(∞) = ∞? Does

χ(J(z), J(w)) = χ(z, w)

hold in C∞?
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Bilinear Transformations and Mappings

In the previous chapter we saw that a complex function of a complex variable
maps points in the z plane onto points in the w plane. After the initial ex-
citement of this discovery wore off, it became rather tiresome to map points
onto points in computer like fashion. In this chapter we will see, for some spe-
cial functions, what happens to regions in the z plane when mapped onto the
regions in the w plane. We will show that bilinear transformations map cir-
cles and straight lines onto circles and straight lines. In fact, we will discover
that—contrary to popular belief—a circle is very similar to a straight line,
at least in the extended complex plane. We also determine the most general
form of bilinear transformation which maps

• the real line R onto the unit circle |z| = 1
• the unit circle |z| = 1 onto itself
• the unit circle |z| = 1 onto R

• the real line R onto itself.

3.1 Basic Mappings

The function w = f(z) = z + b, where b is a complex constant, maps sets
in the z plane onto sets in the w plane displaced through a vector b. This
mapping is known as a translation. Note that the set in the w plane will have
the same shape and size as the set in the z plane. For instance, the function
w = z + (1 + 2i) maps the square having vertices ±1± i onto a square having
vertices i, 2 + i, 3i, and 2 + 3i (see Figure 3.1). To show this, let z = x + iy
and w = u + iv. Then

u + iv = (x + iy) + (1 + 2i), i.e. , u = x + 1, v = y + 2.

As x describes the interval [−1, 1], u describes the interval [0, 2]; as y describes
the interval [−1, 1], v describes the interval [1, 3].
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Figure 3.1. Image of a square under w = z + 1 + 2i

The function w = az, where a = cos α + i sinα, maps a point in the z
plane onto a point in the w plane whose distance from the origin is the same
but whose argument is increased by α, the argument of a. This mapping is
called a rotation. For instance, the function w = iz maps the right half-plane
(Re z > 0) onto the upper half-plane (Im z > 0). Observing that Arg i = π/2,
we may view this geometrically as a mapping of the points in the z plane
satisfying −π/2 < Arg z < π/2 onto points in the w plane satisfying 0 <
Argw < π. Analytically,

w = u + iv = i(x + iy) = −y + ix, i.e. u = −y, v = x.

Thus x > 0 is mapped onto v > 0.
For a > 0, a �= 1 the function w = az is known as a magnification (although

for a < 1 it is really a contraction). This function takes regions in the z plane
and either stretches or shrinks them, depending on whether a > 1 or a < 1.
For instance, the function w = 5z maps the disk |z| ≤ 1 onto the disk |w| ≤ 5.

More generally, for complex values of a, the function w = az represents
both a rotation and a magnification; the expression arg a is the rotation part,
and |a| is the magnification part. Indeed, we can combine a translation, rota-
tion, and magnification to obtain the linear function

w = f(z) = az + b,

where a and b are complex constants. Note that

|w1 − w2| = |f(z1) − f(z2)| = |a| |z1 − z2|

so that the distance between any two points is multiplied by |a|. For instance,
the function

w = (1 − i)z + (2 + i)

maps the rectangle in the z plane shown in Figure 3.2 onto the rectangle in the
w plane that has twice the area, with the length of each side being increased
by a factor of

√
2.

There is a relationship between a complex linear function and the more
familiar real-valued linear function y = ax + b, a straight line. The complex-
valued function w = az+b, with a and b are complex constants, maps straight
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Figure 3.2. Image of a rectangle under w = (1 − i)z + (2 + i)

lines in the z plane onto straight lines in the w plane. Note that the complex
linear functions (a �= 0) always map ∞ to ∞. We leave the determination of
the effect of the constants a and b on the slope of the image line as an exercise
for the reader. Observe that w = az + b, like its real-valued counterpart, is a
one-to-one function.

The mapping w = 1/z, called an inversion, takes points close to the origin
in the z plane onto points far from the origin in the w plane and points far
from the origin in the z plane onto points close to the origin in the w plane.
Indeed if z = reiθ, then

w =
1
z

=
1
r
e−iθ.

In particular, as z approaches the origin, w approaches the point at ∞ in the
extended complex plane; i.e., given M > 0, there exists a δ > 0 such that
|z| < δ implies |w| > M . We thus have a one-to-one map from the extended
plane onto itself with the origin being mapped onto the point at ∞. However,
it is wrong to conclude that inversion always maps lines into lines, and circles
into circles (see Theorem 3.1)

There is also a certain symmetry with respect to both the unit circle and
the real axis. Points inside (outside) the unit circle are mapped onto points
outside (inside) the unit circle, and points above (below) the real axis are
mapped onto points below (above) the real axis (see Figure 3.3).

The inversion w = 1/z is sometimes called a reflection with respect to
both the unit circle and the real axis. To see what happens to sets in the z
plane when transformed into sets in the w plane by this reflection, we solve

w = u + iv =
1
z

=
1

x + iy

for a given variable in one plane in terms of the variables in the other plane.
This gives the relations

u =
x

x2 + y2
, v = − y

x2 + y2
(3.1)
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Figure 3.3. Illustration for w = 1/z

and

x =
u

u2 + v2
, y = − v

u2 + v2
. (3.2)

From (3.1) or (3.2) we obtain

x2 + y2 =
1

u2 + v2
. (3.3)

Now consider the equation

a(x2 + y2) + bx + cy + d = 0, (3.4)

where a, b, c, and d are real constants. This equation represents a circle if
a �= 0 and a straight line if a = 0. From (3.1), (3.2), and (3.3), we see that the
function w = 1/z maps (3.4) onto the set

d(u2 + v2) + bu − cv + a = 0, (3.5)

which describes a circle for d �= 0 and a straight line if d = 0.
We can now, in view of (3.4) and (3.5), draw several conclusions about the

mapping properties of w = 1/z:

(a) Circles not passing through the origin (that is, with a �= 0 and d �= 0).
are mapped onto circles not passing through the origin.

(b) Circles passing through the origin (that is, with a �= 0 and d = 0) are
mapped onto straight lines not passing through the origin.

(c) Straight lines not passing through the origin (that is, with a = 0 and
d �= 0) are mapped onto circles passing through the origin.

(d) Straight line passing through the origin (that is, with a = 0 and d = 0)
are mapped onto straight lines passing through the origin.

(e) The circle |z| = 1 maps onto the circle |w| = 1.
(f) The punctured disk Δ \ {0} maps onto C \ Δ, and conversely.
(g) All points on C \ Δ map onto Δ \ {0}.
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In short, we have

Theorem 3.1. The function w = 1/z maps circles and straight lines onto
circles and straight lines.

Is there a way to remember which maps onto which? The key lies in the
fact that the origin maps onto the point at ∞. Every straight line (and no
circle) passes through the point at ∞. Hence a straight line or circle maps
onto a straight line if it passes through the origin, and onto a circle if it does
not. Also, we note that the interior of a circle containing the origin maps onto
the exterior of a circle, and the interior of a circle not containing the origin
(nor having the origin as a boundary point) maps onto the interior of a circle.
Finally, we present some precise mapping properties of w = 1/z. Consider the
circle |z − a| = R, a �= 0. If w = 1/z, then we obtain that

|z − a| < R ⇐⇒
∣∣∣∣ 1
w

− a

∣∣∣∣ < R ⇐⇒ |1 − aw|2 < R2|w|2

⇐⇒ |w|2(|a|2 − R2) − 2Re (aw) + 1 < 0.

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Re (aw) > 1/2 for R = |a|∣∣∣∣w − a

|a|2 − R2

∣∣∣∣ <
R

|a|2 − R2
for R < |a|∣∣∣∣w − a

|a|2 − R2

∣∣∣∣ >
R

R2 − |a|2 for R > |a|.

For example, if R = |a|, then under the inversion w = 1/z we have

• |z − a| < |a| is mapped onto the half-plane Re (aw) > 1/2
• |z − a| = |a| is mapped onto the straight line Re (aw) = 1/2
• |z − a| > |a| is mapped onto the half-plane Re (aw) < 1/2.

When |a|2 − R2 �= 0, there exist two possibilities |a| > R and |a| < R.
In each of these cases, mapping properties may be stated with the help of
the above discussion. For example, under the inversion w = 1/z, we have the
following:

• |z − 3| < R is mapped onto the disk
∣∣∣∣w − 3

9 − R2

∣∣∣∣ <
R

9 − R2
for R < 3

• |z − 3| < R is mapped onto the disk
∣∣∣∣w +

3
R2 − 9

∣∣∣∣ >
R

R2 − 9
for R > 3

• |z−3| = R is mapped onto the disk
∣∣∣∣w − 3

9 − R2

∣∣∣∣ =
R

|9 − R2| for R �= 3.

Questions 3.2.

1. The functions w = 1/z, w = z, and w = −z all map the upper half of
the unit circle onto lower half. What are their differences?
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2. How does the area of a region compare with the area of its image for a
linear function? For an inversion?

3. For w = 1/z, what is the image of the interior of a circle having the
origin as boundary point?

4. What happens to conic sections other than circles under an inversion?
5. Is there a difference between performing a translation followed by an

inversion and an inversion followed by a translation?
6. For the four operations of translation, rotation, magnification, and in-

version, which pairs may be interchanged without affecting the mapping
properties?

Exercises 3.3.

1. For the mapping w = (1 + i)z + 2, find the image of
(a) the line y = 2x
(c) the circle |z| = 3

(b) the line y = 3x + 2
(d) the circle |z − 1| = 2.

2. Find the image of the half-plane Re z > 0 under the transformation
(a) w = 2iz − i (b) w = i/z − 1.

3. Find the image of the semi-infinite strip {z : 0 < Re z < 2, Im z > 1}
for the transformation w = (1 − i)z + (2 − i), and sketch.

4. Find a linear transformation f that maps the circle |z + 1| = 2 onto the
circle |w + i| = 3. Find also the image of |z + 1| < 2 under f .

5. Prove that the linear transformation w = az + b maps a circle having
radius r and center z0 onto a circle having radius |a|r and center az0+b.

6. Given a triangle with vertices at 3+4i, −3+4i, and −5i, find its image
for the transformation
(a) w = z + 5i (b) w = iz + (2 − i) (c) w = (2 + i)z − 3.

7. Find the image of the line y = 2x + 1 under the following transforma-
tions.
(a) w = 1/z (b) w = i/z (c) w = 1/(z − 2i).

8. For the transformation w = 1/z, find the image of
(a) the circle |z − 2| = 1
(c) the circle |z − 1| = 1
(e) the infinite strip 1

4 < Re z < 1
2 .

(b) the circle |z − 1| = 2
(d) the domain Re z > 1.

9. Find the images of the strips 0 ≤ Re z ≤ 2 and 0 ≤ Im z ≤ 2 under the
map w = 1/z.

3.2 Linear Fractional Transformations

By considering quotient of two linear transformations, we get a very important
class of mappings of the form, known as a linear fractional transformation:

w = T (z) =
az + b

cz + d
, (3.6)
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where a, b, c and d are the complex numbers such that ad − bc �= 0. This
transformation contains, as special cases, the mappings of the previous section.
For c = 0 we have a linear transformation, and for a = d = 0, b = c we have
an inversion. The condition ad − bc �= 0 ensures that the mapping is not a
constant. To see this, suppose that ad − bc = 0. If c �= 0, we may solve for
b = ad/c and write (3.6) as

w =

a

c
(cz + d) + b − ad

c
cz + d

=
a

c
+

b − ad

c
cz + d

=
a

c
, (3.7)

a constant. Similarly if a �= 0, then ad − bc = 0 gives d = bc/a so that (3.6)
becomes

w =
az + b

cz + bc/a
=

a

c

(
z + b/a

z + b/a

)
=

a

c
,

again a constant. If ad − bc = 0 and a = 0, then either b = 0 or c = 0. When
a = b = 0, it follows that w = 0, and when a = c = 0, we see that w = b/d, a
constant. We will henceforth assume that ad − bc �= 0. Thus, we write

w = T (z) =
az + b

cz + d
=

⎧⎪⎨
⎪⎩

a

c
−

(
ad − bc

c2

)
1

z + d/c
if c �= 0(a

d

)
z +

b

d
if c = 0.

(3.8)

The domain of the definition of T (z) is C \ {−d/c}. Clearly, T (z) is a one-
to-one function on its domain. Since T is well defined for all points in the
extended complex plane except at z = −d/c and the point at ∞, we may
extend the definition of T to the extended complex plane by including these
points. Indeed, as

lim
z→−d/c

1
T (z)

= lim
z→−d/c

cz + d

az + b
=

0
a(−d

c ) + b
= 0,

we find that limz→−d/c T (z) = ∞. Further, we have

lim
z→∞

az + b

cz + d
= lim

z→0

a
z + b
c
z + d

= lim
z→0

a + bz

c + dz
=

a

c
,

and hence for c �= 0, we may define

T (z) =

⎧⎪⎪⎨
⎪⎪⎩

az + b

cz + d
if z �= −d/c, z �= ∞

∞ if z = −d/c
a

d
if z = ∞

and T defined in this way is then one-to-one onto the extended complex plane
and has an inverse that is also a linear fractional transformation. Solving for
z, in terms of w, we obtain
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z = T−1(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dw − b

−cw + a
if w �= a/c, w �= ∞

∞ if w = a/c

−d

c
if w = ∞.

Thus regions may be mapped with equal facility from the extended z plane to
the extended w plane or from the extended w plane to the extended z plane.
When cleared of fractions, (3.6) assumes the form

Azw + Bz + Cw + D = 0,

an equation that is linear in both z and w. For this reason, a linear fractional
transformation is often called a bilinear transformation.

A bilinear transformation represents a one-to-one continuous mapping of
the extended complex plane onto itself with the point z = −d/c mapping onto
w = ∞ and the point z = ∞ mapping onto w = a/c. Recall that

• a linear transformation maps circles onto circles and straight lines onto
straight lines.

• an inversion maps circles and straight lines onto circles and straight
lines, see Theorem 3.1.

We will use these facts to deduce that bilinear transformations have similar
mapping properties. We consider w = T (z) defined by (3.8) for c �= 0. Then
we have that

w = T (z) = (f3 ◦ f2 ◦ f1)(z),

where
w1 = f1(z) = z +

d

c
, w2 = f2(w1) =

1
w1

and

w = f3(w2) =
a

c
−

(
ad − bc

c2

)
w2.

That is z �→ w = T (z) is given by the composition

z �→ w1 �→ w2 �→ w.

The first is linear and maps circles in the z plane onto circles in the w1

plane and straight line in the z plane onto straight lines in the w1 plane; the
second is an inversion, mapping circles and straight lines in the w1 plane onto
circles and straight lines in the w2 plane; the third is again linear and maps
circles in the w2 plane onto circles in the w plane and straight lines in the
w2 plane onto straight lines in the w plane. If c = 0, the transformation is a
linear. The above results may be summarized as

Theorem 3.4. The bilinear transformation maps circles and straight lines
onto circles and straight lines.
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In the foregoing proof, we have also shown that a linear fractional transfor-
mation (3.8) can be written as a composition of three types of elementary
transformations namely,

• the translation T1(z) = z + B
• the inversion T2(z) = 1/z
• the dilation T3(z) = Az.

Note that a dilation is a composition of a magnification (or contraction) and
rotation. The order in which these transformations are performed is immate-
rial as they commute.

Remark 3.5. The point z = −d/c plays the same role in the bilinear trans-
formation as does the point z = 0 in the inversion transformation. Thus a
straight line or a circle maps onto a straight line if it passes through the point
z = −d/c, and onto a circle if it does not. •

Theorem 3.4 may often be used to simplify computation. For example, in
Exercise 1.8(6), the reader was asked to show that

Re
{

z

1 − z

}
> −1

2
for |z| < 1.

Presumably, the reader separated z/(1− z) into its real and imaginary parts,
substituted in points inside the unit disk, and then marveled at the result. We
will now apply more sophisticated techniques that give some insight into the
solution. The bilinear transformation w = z/(1− z) maps the unit circle onto
a straight line (since z = 1 maps onto w = ∞). By choosing any two distinct
points on the unit circle, we can determine this straight line. The point −1
and i map onto the points − 1

2 and − 1
2 + i

2 , respectively. Thus the image of
the circle |z| = 1 is the line Re w = − 1

2 (see Figure 3.4). The continuity of a
bilinear map reveals that connected sets are mapped onto connected sets (see
Exercise 2.46(13)). Since a bilinear map is also a one-to-one mapping of the
extended plane onto itself, the image of |z| < 1 is either

Figure 3.4. Illustration for the image of the unit disk under z/(1 − z)
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Re w > −1
2

or Re w < −1
2
.

To determine the correct image, we need to test only one point. The origin
mapping onto itself assures us that |z| < 1 maps onto Re w > − 1

2 . Alterna-
tively, we simply note that

w =
z

1 − z
⇐⇒ z =

w

1 + w
=

w(1 + w)
|1 + w|2 =

w + |w|2
|1 + w|2 .

Thus, |z| = 1 gives

|w|2 = |1 + w|2, i.e., Re w = −1/2

and, since 0 is mapped onto w = 0, it follows that |z| < 1 is mapped onto
Re w > −1/2 under the map w = z/(1 − z).

Example 3.6. Suppose the reader was asked to find the image of the closed
half disk {z : |z| ≤ 1, Re z ≥ 0} under the bilinear transformation

w =
z

1 − z
.

We know that |z| < 1 is mapped onto Rew > −1/2. Moreover, Re z ≥ 0 is
mapped onto points

Re w + |w|2 = |w + (1/2)|2 − 1/4 ≥ 0, i.e., |w + 1/2| ≥ 1/2.

Consequently, the image of the closed half disk {z : |z| ≤ 1, Re z ≥ 0} under
the bilinear transformation w = z/(1 − z) is

{w : Rew ≥ −1/2} ∩ {w : |w + 1/2| ≥ 1/2}.

Note also that Im z ≤ 0 is mapped onto Imw ≤ 0, showing that the
image of the closed half disk {z : |z| ≤ 1, Im z ≤ 0} under w = z/(1 − z)
is {w : Re w ≥ −1/2 and Imw ≤ 0}. What is the image of one-quarter disk
{z : |z| ≤ 1, Im z ≤ 0,Re z ≥ 0}? •
Example 3.7. Suppose the reader is asked to find the image of the annulus
{z : 1 < |z| < 2} under w = z/(1 − z). To do this, we first note that

z =
w

1 + w

and so
|z| > 1 ⇐⇒ |w|2 > |1 + w|2, i.e., 0 > 1 + 2Re w

and

|z| < 2 ⇐⇒ |w|2 < 4|1 + w|2, i.e. 0 < 3[|w + (4/3)|2 − (4/9)].

So we see easily that
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• |z| > 1 is mapped into Rew < −1/2
• |z| < 2 is mapped onto |w + 4/3| > 2/3

and the required image is {w : Re w < −1/2} ∩ {w : |w + 4/3| > 2/3}. •
So far, we have been concerned with determining the images of sets under

a fixed bilinear transformation. We now reverse the problem and consider the
following.

Problem 3.8. Given two sets, under what circumstances will there exist a
bilinear map from one set onto the other?

From elementary geometry, we know that any three points determine either
a circle or a straight line depending on whether the three points are collinear.
Any bilinear transformation maps a circle or a straight line determined by
these points onto either a circle or a straight line, depending on the coefficients
of the bilinear transformation.

For our next result, we need the notion of fixed points. A point z in C∞
that satisfies the equation

z = T (z)

is called a fixed point of T . The identity transformation I(z) = z has every z
in C∞ as its fixed points. Concerning other bilinear transformations, we have
the following result which has many important consequences.

Theorem 3.9. A bilinear transformation w = T (z) with more than two fixed
points in C∞ must be the identity transformation.

Proof. Suppose that c = 0 in (3.8). Then, T is of the form

T (z) = αz + β, α �= 0.

The solution of z = αz + β are the fixed points of T . Clearly, the solution set
is given by

(i) z = ∞ and z = β/(1 − α) whenever α �= 1
(ii) z = ∞ whenever α = 1, β �= 0
(iii) all z whenever α = 1, β = 0.

Suppose that c �= 0. Then ∞ cannot be a fixed point and the fixed point
equation z = T (z) gives the quadratic equation

cz2 + (d − a)z − b = 0

which has at most two complex roots. Evidently, the only situation which
provides more than two fixed points is the one in which T = I, the identity
transformation.

We will now show that for A (a circle or a straight line in the z plane) and
B (a circle or a straight line in the w plane), there exists a bilinear map from
A onto B.
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Theorem 3.10. Given three distinct points, z1, z2, and z3 in the extended z
plane and three distinct points w1, w2, and w3 in the extended w plane, there
exists a unique bilinear transformation w = T (z) such that T (zk) = wk for
k = 1, 2, 3.

Proof. We first assume that none of the six points is ∞. Let T be given by
(3.6). We wish to solve for a, b, c, and d in terms of z1, z2, z3, w1, w2, and w3.
This sounds more complicated than it is. For k = 1, 2, 3, we have

w − wk =
az + b

cz + d
− azk + b

czk + d
=

(ad − bc)(z − zk)
(cz + d)(czk + d)

. (3.9)

From (3.9) we obtain

w − w1

w − w3
=

(
cz3 + d

cz1 + d

)(
z − z1

z − z3

)
. (3.10)

Replacing z by z2 and w by w2 in (3.10) leads to

w2 − w3

w2 − w1
=

(
cz1 + d

cz3 + d

)(
z2 − z3

z2 − z1

)
. (3.11)

Multiplying (3.10) by (3.11) we have

(w − w1)(w2 − w3)
(w − w3)(w2 − w1)

=
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

. (3.12)

Solving for w in terms of z and the six points gives the desired transformation.
If one of the points were the point at ∞, say z3 = ∞, (3.12) would be modified
by taking the limit as z3 approached ∞. In this case, we would have

(w − w1)(w2 − w3)
(w − w3)(w2 − w1)

=
z − z1

z2 − z1
.

Now suppose that S(z) and T (z) are both bilinear transformations that agree
at three or more points in C∞, say

wk = S(zk) = T (zk) for k = 1, 2, 3.

Then for k = 1, 2, 3,

(S−1 ◦ T )(zk) = S−1(T (zk)) = S−1(wk) = zk

and so, by Theorem 3.9, S−1 ◦ T = I. This gives S = T which proves the
uniqueness part of the theorem.

Corollary 3.11. Given three distinct points, z1, z2, and z3 in the extended
z plane there exists a unique bilinear transformation w = T (z) such that
T (z1) = 0, T (z2) = 1, T (z3) = ∞ and it is given by

w =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

.
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Remark 3.12. The right side of (3.12) is called the cross ratio of the points
z1, z2, z3, z and is denoted by (z1, z2, z3, z). Observe that (3.12) asserts the
invariance of the cross ratio under a bilinear transformation. That is, for any
four distinct pairs of points (z1, w1), (z2, w2), (z3, w3), and (z, w) of a bilinear
transformation, we must have

(z1, z2, z3, z) = (w1, w2, w3, w). •
Remark 3.13. It is not surprising that three points determine a bilinear
transformation. If we divide (3.6) by one of the nonzero constants (assume
a �= 0), then (3.6) may be rewritten as

w =
z + B

Cz + D
,

and elementary algebra may be used to solve for three equations with three
unknowns. Moreover, the proof of Theorem 3.10 suggests a method of finding
w = T (z) satisfying the condition wj = T (zj) whenever zj and wj are given,
j = 1, 2, 3. In many cases, T can be found with even less trouble as we can
seen in some of the examples of this section. •
Example 3.14. Let us now find a bilinear transformation that maps the
points z = i, 2,−2 onto w = i, 1,−1, respectively.

To do this we may simply use (3.12) and obtain

(w − i)(1 + 1)
(w + 1)(1 − i)

=
(z − i)(2 + 2)
(z + 2)(2 − i)

.

Solving this equation, we obtain

w =
3z + 2i

iz + 6
.

Similarly, it is easy to find the bilinear transformation that maps the points
z = 1 − i, 1 + i,−1 + i onto 0, 1,∞, respectively.

Indeed, by Corollary 3.11, we see that the desired transformation is

w =
z − (1 − i)
iz + (1 + i)

. •
Example 3.15. Let us find a bilinear transformation which maps the disk
|z + i| < 1 onto the exterior disk |w| > 4. To do this, we consider

f(z) =
az + b

cz + d
.

Without loss of generality we may assume that f(−i) = ∞. Then f(z) takes
the form

f(z) =
az + b

z + i
.
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Note that f(0) = −ib and f(−2i) = 2a + ib. According to our requirements,
these two points must lie on the circle |w| = 4. This gives

|b| = 4 and |2a + ib| =
√

4a2 + b2 = 4.

A choice satisfying these two conditions are b = 4 and a = 0. This shows that
f(z) = 4/(z + i) is a bilinear transformation which maps the circle |z + i| = 1
onto the circle |w| = 4. Since −i �→ ∞,

f(z) =
4

z + i

is exactly a desired transformation. Note also that this is not unique as there
are many bilinear transformations which do the same job. •

Thus far we have seen that there is a unique bilinear transformation map-
ping three distinct points in the z plane onto three distinct points in the w
plane. This has given rise to ways of mapping circles and straight lines onto
circles and straight lines, although not uniquely. For example, to find a func-
tion mapping a line onto a circle, we may choose any three points on the line
and make them correspond with any three points on the circle. Let Im z0 > 0.
Then, by Theorem 3.10, the bilinear transformation mapping such that

z0 �→ 0, z0 �→ ∞, 0 �→ z0

z0
,

is given by

w =
z − z0

z − z0
.

Note that this function maps the real line R onto the unit circle |w| = 1.
Moreover, as z0 �→ 0, it must map the upper half-plane {z : Im z > 0} onto
the unit disk |w| < 1 and lower half-plane {z : Im z < 0} onto the exterior
|w| > 1. On the other hand, the bilinear transformation mapping the points
z = z0, z0, 0 onto the points w = 0,∞, z0/z0 respectively, given by

w =
z − z0

z − z0
,

maps the lower half-plane onto the unit disk |w| < 1 and upper half-plane
onto the exterior |w| > 1. How about the bilinear transformation such that

z0 �→ 0, z0 �→ ∞, 0 �→ eiα z0

z0
?

We will now attempt to solve the following.

Problem 3.16. Characterize all bilinear transformations that map the upper
half-plane onto the interior of the unit circle.
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These transformations in question, of course, must map the real line R

onto the unit circle |w| = 1. Letting

w =
az + b

cz + d
,

we choose specific points to determine conditions for our coefficients. Since
|w| = 1 when z = 0 and z = ∞, we obtain∣∣∣∣ bd

∣∣∣∣ = 1 and
∣∣∣a
c

∣∣∣ = 1. (3.13)

In view of (3.13), we have ∣∣∣∣ ba
∣∣∣∣ =

∣∣∣∣dc
∣∣∣∣ .

Hence the transformation may be written as

w =
a

c

z + b/a

z + d/c
= eiα z − z0

z − z1

(
z0 = − b

a
, z1 = −d

c

)
, (3.14)

where α ∈ R and |z0| = |z1|. Can we obtain additional information about the
relationship between z0 and z1? By letting z = 1 in (3.14), we have

|w| =
∣∣∣∣1 − z0

1 − z1

∣∣∣∣ = 1,

or

|1 − z0| = |1 − z1|. (3.15)

Upon simplifying (3.15), we see that Re z0 = Re z1. Since |z1| = |z0|, either
z1 = z0 or z1 = z0. If z1 = z0, then ad − bc = 0 and so, (3.14) reduces to a
constant. Thus z1 = z0, and we have

Theorem 3.17. The most general bilinear transformation of the real line R

onto the unit circle |w| = 1 is given by

w = T (z) = eiα z − z0

z − z0
, (3.16)

where α ∈ R.

Since the point z0 maps onto the origin and z0 maps onto ∞, (3.16) maps
the upper half-plane onto the interior of the unit circle if Im z0 > 0 and onto
its exterior if Im z0 < 0. How do we characterize all bilinear transformations
that map the right half-plane {z : Re z > 0} onto the unit disk |w| < 1?

We wish to determine the most general set of coefficients such that

w =
az + b

cz + d
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will map Im z > 0 onto Im w > 0. As in the previous example, we will first
find all bilinear mappings from the boundary of the region in the z plane onto
the boundary of the region in the w plane and then determine the subset
of these mappings that satisfy our additional criterion. Bilinear mappings
from Im z = 0 onto Imw = 0 are found by mapping any three points on
the real axis of the z plane onto any three points in the real axis of the w
plane. Let z = z1, z2, z3 map onto the points w = 0, 1,∞, respectively. Since
w = [0, 1,∞, w], the invariance of cross ratio shows that (see Corollary 3.11)

w = (z1, z2, z3, z) =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

for any z.

Since z1, z2, z3 are all real, the coefficients a, b, c, d of

w =
az + b

cz + d

must all be real. To see what further constraints are necessary, we rewrite

w =
az + b

cz + d
=

(az + b)(cz + d)
|cz + d|2 =

ac|z|2 + bd + adz + bcz

|cz + d|2 .

Then, whenever Im z > 0, we have

Im w =
(ad − bc)Im z

|cz + d|2 > 0 if and only if ad − bc > 0.

Moreover, Im w < 0 if and only if ad − bc < 0. Recall that the map is onto.
Hence we have the following.

Theorem 3.18. The most general bilinear map of the upper half-plane
{z : Im z > 0} onto itself is given by

w =
az + b

cz + d
,

where a, b, c, d are real and ad − bc > 0.

Corollary 3.19. The most general bilinear map of the upper half-plane
{z : Im z > 0} onto the lower half-plane {w : Imw < 0} is given by

w =
az + b

cz + d
,

where a, b, c, d are real and ad − bc < 0.

Next we ask

Problem 3.20. Determine all bilinear transformations that map the unit disk
{z : |z| < 1} onto itself.
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The answer to this problem will necessitate mapping the unit circle onto
itself. Any rotation of the identity function (that is, w = az, |a| = 1) is a
solution to our problem. But there are more general transformations that
take the unit disk onto itself.

Theorem 3.21. The most general bilinear transformation that takes the unit
disk Δ = {z : |z| < 1} onto itself is given by

f(z) = eiα

(
z − z0

1 − z0z

)
, (3.17)

where α ∈ R and z0 ∈ Δ.

If, in Theorem 3.21, we take z0 with |z0| > 1, then f maps |z| > 1 onto
|w| < 1 so that f in this choice maps |z| < 1 onto |w| > 1.

There are several proofs of this result. The easiest proof follows from the
principle of inverse points. Let us now discuss an important concept concerning
inverse/symmetric points. Let L be a line in C. Two points z and z∗ are
called the inverse points (symmetric) with respect to the line L if L is the
perpendicular bisector of [z, z∗], the line segment connecting z and z∗, see
Figure 3.5.

Figure 3.5. Inverse points with respect to a line L

Then it is easy to see that every line or circle passing through both z and
z∗ intersect L at right angles. For instance,

(i) z and z∗ are inverse points with respect to the real axis whenever z∗ = z,
(ii) z and z∗ are inverse points with respect to the imaginary axis whenever

z∗ = −z.

Consider w = 1/z, z ∈ Δ = {z : |z| < 1}. Then the point z = reiθ (0 < r < 1)
in Δ maps onto the point (1/r)e−iθ which lies outside the unit circle |z| = 1.

Let L be the line from the center “O” through z = reiθ. Draw a line S
perpendicular to the line L through the point z. The line S intersects the
unit circle |z| = 1 at two points. Draw tangents at which S intersects the unit
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circle. It is easy to see these two tangents intersect the line L at the point
1/z. Note that

|z|
∣∣∣∣1z

∣∣∣∣ = 1

and 0, z, 1/z lie on the same ray.
Using the above discussion, we may define the inverse points with respect

to an arbitrary circle as follows: we say that two points z and z∗ in C are
the inverse points with respect to a circle in C if every line or circle passing
through both z and z∗ intersect at right angles. It is easy to see the following:
“Let C = {ζ : |ζ − z0| = R} be a circle in C with center at z0 and radius R.
Two points z and z∗ are inverse points with respect to the circle C if

(i) z and z∗ are collinear with center z0

(ii) |z − z0| |z − z∗| = R2.”

We remark the following:

• If z moves close to the boundary of C, the point z∗ also moves closer
to the boundary. In other words, every point on the circle is the inverse
point of itself.

• If z moves towards the center z0, then |z−z0| → 0 whereas |z−z∗| → ∞.
This fact is expressed by saying that the center “z0” and the point at
“∞” are the inverse points with respect to the circle C. Since R is
arbitrary, the center and the point ∞ are inverse points with respect to
any circle centered at z0 and any finite radius.

• Let z be a point inside the circle. Then z = z0 + reiθ(r < R). If z∗ is
the inverse point of z with respect to the circle C, then, since z and z∗

lie on the same ray through z0, we have

Arg (z∗ − z0) = Arg (z − z0) = θ and |z − z0| |z∗ − z0| = R2.

This gives

z∗ − z0 =
(

R2

|z − z0|

)
eiθ =

R2

re−iθ
=

R2

z − z0
.

The fact discussed above may be formulated as

Corollary 3.22. Two points z and z∗ are inverse points with respect to the
circle C = {ζ : |ζ − z0| = R} if and only if

(z∗ − z0)(z − z0) = R2, i.e., z∗ = z0 +
R2

z − z0
. (3.18)

Thus, one may define the inversion in C = {ζ : |ζ − z0| = R} as a map
JC : C∞ → C∞ defined by

JC(z) = z0 +
R2

z − z0
, z �= z0.
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Note that JC(z0) = ∞, Jc(∞) = z0, and JC(ζ) = ζ whenever ζ ∈ C. So, the
points that are images of each other under JC are said to be the inverse points
with respect to the circle C.

Example 3.23. If α and α∗ are inverse points with respect to the circle
|ζ − z0| = R, then we see that the equation of the circle is∣∣∣∣ ζ − α

ζ − α∗

∣∣∣∣ = k (k ∈ R, k �= 1).

To see this, we let ζ = z0 + Reiθ. As α and α∗ are inverse points with respect
to the circle |ζ − z0| = R, we have

α∗ = z0 +
R2

r
eiφ

where α − z0 = reiφ. Then

ζ − α = z0 + Reiθ − α = Reiθ − reiφ and ζ − α∗ = Reiθ − R2

r
eiφ

so that ∣∣∣∣ ζ − α

ζ − α∗

∣∣∣∣ =

∣∣∣∣∣ Reiθ − reiφ

Reiθ − R2

r eiφ

∣∣∣∣∣ =
r

R

∣∣∣∣Reiθ − reiφ

reiθ − Reiφ

∣∣∣∣ =
r

R

and the result follows. •
Let us now obtain a necessary and sufficient condition for two points z

and z∗ to be inverse point with respect to a circle in C∞.
Let the equation of a line L be

aX + bY + c = 0 (a, b, c ∈ R),

or equivalently in complex form as

βZ + βZ + c = 0 (β = (a + ib)/2 ∈ C, c ∈ R).

Suppose that z = x+ iy and z∗ = x∗ + iy∗ are the inverse points with respect
to L. Then the slope of the line passing through z and z∗ is

m =
b

a
=

y − y∗

x − x∗

because the line L has slope m′ = −a/b and L is perpendicular to [z, z∗].
Thus, as the midpoint (z + z∗)/2 of [z, z∗] lies in L, elementary geometry
reveals that

y − y∗

x − x∗ =
b

a
and β

(
z + z∗

2

)
+ β

(
z + z∗

2

)
+ c = 0,
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or equivalently,

βz + βz∗ + c = βz + βz∗ + c and (βz + βz∗ + c) + (βz + βz∗ + c) = 0.

Note that this is of the form A = A and A + A = 0 which imply that A = 0.
In conclusion, we have

Theorem 3.24. Two points z and z∗ are inverse points with respect to the
line βZ + βZ + c = 0 if and only if βz + βz∗ + c = 0.

Let us state and prove a general result which covers the case of a circle.

Theorem 3.25. Two points z and z∗ are inverse points with respect to the
circle in C∞,

αZZ + βZ + βZ + γ = 0 (3.19)

if and only if

αzz∗ + βz + βz∗ + γ = 0. (3.20)

(Note that line is considered as a circle of infinite radius; in this case α = 0).

Proof. Without loss of generality, we may assume that α = 1 as α = 0 has
been dealt with in Theorem 3.24. For α = 1, (3.19) is equivalent to

|Z + β| =
√

|β2| − γ.

Thus, by (3.18), z and z∗ are symmetric with respect to the circle

|Z + β| =
√

|β2| − γ (z0 = −β and R =
√
|β2| − γ)

if and only if

[z∗ − (−β)][(z − (−β))] = |β|2 − γ, i.e., zz∗ + βz + βz∗ + γ = 0

and the proof is complete.

If we choose β = 0 and γ = −1 in Theorem 3.25, then we see that z and
z∗ are the inverse points with respect to the unit circle |z| = 1 if and only if

zz∗ = 1, i.e., z∗ =
1
z
.

The concept of inverse points is useful in solving mapping problems that
involve bilinear transformations because of the remarkable property which
asserts that “bilinear transformation preserve inverse points”. More precisely,
we have
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Theorem 3.26. Let C be a circle in C∞. Suppose further that w = T (z) is a
bilinear transformation and C ′ = T (C) is the transformed circle in C∞. The
two points z and z∗ in C∞ are inverse points with respect to C if and only if
w = T (z) and w∗ = T (z∗) are inverse points with respect to C ′.

Proof. Let the equation of the circle C in C∞ be given by

αZZ + βZ + βZ + γ = 0 (α ∈ R, β ∈ C, γ ∈ R). (3.21)

Suppose that z and z∗ are a pair of inverse points with respect to the circle
C. By Theorem 3.25, z and z∗ must satisfy

αzz∗ + βz + βz∗ + γ = 0. (3.22)

Let W = T (Z) = (aZ + b)/(cZ + d) be a bilinear transformation. Then

Z =
dW − b

−cW + a
.

We wish to show that T (z) = w and T (z∗) = w∗ are inverse points with
respect to the transformation circle C ′ = T (C). First we see from (3.21) that
the image of the circle C under W = T (Z) is given by

α

(
dW − b

−cW + a

)(
dW − b

−cW + a

)
+ β

(
dW − b

−cW + a

)
+ β

(
dW − b

−cW + a

)
+ γ = 0.

The image of (3.22) under w = T (z) is the same as above except that w and
w are replaced by w and w∗, respectively. Therefore, by Theorem 3.25, w and
w∗ must be inverse points with respect to the transformed circle C ′ described
by the above equation. The converse follows similarly.

Using this theorem, it is easy to characterize all bilinear transformations
which map a circle in C∞ to another given circle in C∞.

Let us first find all bilinear transformations which map the unit disk
Δ = {z : |z| < 1} onto itself. To do this let f(z) to be a general bilinear
transformation which takes Δ onto itself. Clearly, there exists a z0 in Δ such
that f(z0) = 0. We know that z0 and 1/z0 are inverse points with respect to
the unit circle |z| = 1 (Recall that, as z0 �→ 0, 1/z0 �→ ∞ and so 0 and ∞
are inverses with respect to the any circle centered at the origin). As z0 �→ 0,
1/z0 �→ ∞, and so f must be of the form

w = f(z) = k

(
z − z0

z − 1/z0

)
= −kz0

(
z − z0

1 − zz0

)
= A

(
z − z0

1 − zz0

)

where A is a constant chosen so that |w| = 1. As |z| = 1 implies that |w| = 1,
we in particular have

|f(1)| = 1, i.e.,
∣∣∣∣A

(
1 − z0

1 − z0

)∣∣∣∣ = |A| = 1,
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which gives A = eiα for some real α. Thus, f has the desired form, namely
(3.17). Theorem 3.21 follows.

Let us next use the symmetry principle to obtain all bilinear transforma-
tions that map the upper half-plane {z : Im z > 0} onto the unit disk |z| < 1.
To see this we suppose that z0 (Im z0 > 0) is mapped to w = 0. Note that
z0 is symmetric to z0 with respect to the real axis of the z-plane. As w = 0
and w = ∞ are symmetric with respect to the unit circle, the desired bilinear
transformation w = T (z) must carry z0 to w = ∞. Therefore,

w = T (z) = A

(
z − z0

z − z0

)

for some complex constant A. When z is real, we have |w| = 1 which gives
|A| = 1, i.e., A = eiα for some α ∈ R, and T (z) is of the form (3.16). Thus,
we have provided an alternate proof of Theorem 3.17.

Questions 3.27.

1. In choosing three points, why is it often convenient to pick 0, 1, and ∞?
2. When will the sum of bilinear transformations be a bilinear transforma-

tion? The product?
3. What kind of bilinear transformation maps ∞ onto itself?
4. What kind of bilinear transformation maps ∞ onto the origin?
5. How many bilinear transformations map more than two points onto

themselves?
6. What is the form of a bilinear transformation which has one fixed point

z1 ∈ C and the other fixed point at ∞? How about, in particular, z1 = 0?
7. Is there a bilinear transformation having no fixed point?
8. Is there a bilinear transformation having exactly one fixed point? How

about f(z) = z/(2z + 1)?
9. What can we say about a transformation which has ∞ as the only fixed

point? Is it simply the transformation of the form f(z) = z+β, for some
β ∈ C?

10. Why don’t we say that f(z) = z is a bilinear transformation? Does it
have infinitely many fixed points? Is it true that the only bilinear trans-
formation, having more than two fixed points, is the identity transfor-
mation?

11. Does the isogonal map f(z) = z preserve cross ratio?
12. Without substituting any points, is there a way to determine whether

a region maps inside or outside another region?
13. What can you say about the existence of bilinear transformations from

a triangle to a square? Triangle to a circle? Triangle to a straight line?
Square to a square?

14. From (3.16) we see that a bilinear mapping from the real line to the
unit circle is uniquely determined by finding the point that maps onto
the origin and one other point. Does this contradict the fact that three
points determine a bilinear transformation?
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15. Are there any one-to-one mappings of the extended plane onto itself,
other than bilinear transformations?

Exercises 3.28.

1. Find the cross ratio of the four roots of i1/4 and 11/4.
2. Find a bilinear transformation mapping the points

(a) z1 = 0, z2 = i, z3 = −i onto w1 = i, w2 = −i, w3 = 0
(b) z1 = 1, z2 = i, z3 = ∞ onto w1 = i, w2 = −1, w3 = 0
(c) z1 = 2, z2 = −1, z3 = −i onto w1 = ∞, w2 = −1, w3 = −i
(d) z1 = 2, z2 = ∞, z3 = i onto w1 = ∞, w2 = −1, w3 = 1.

3. Using the invariance property of the cross-ratio, find a bilinear trans-
formation f in each of the following cases:
(a) {1, i,−1} onto {1, 0, i}
(b) {∞, i, 0} onto {0, i,∞}
(c) {−i,−2 + i, 3i} onto {4, 1 + 3i,−2}
(d) {0, 1,∞} onto {−i, 1, i}.

4. Under the transformation w = iz/(z − 1), find the image of
(a) the closed unit disk |z| ≤ 1.
(b) the closed right half-plane Re z ≥ 0.
(c) the closed upper half-plane Im z ≥ 0.
(d) the open infinite sector π/4 < Arg z < π/2.

5. Under the transformation w = (z − 1)/(z + 1), find the image of
(a) |z| ≤ r < 1
(c) Im z > 1

(b) |z| ≤ r (r > 1)
(d) Im z > Re z.

6. Find conditions for a bilinear transformation to carry a straight line in
the z-plane onto the unit circle |w| = 1.

7. Let w be a bilinear transformation from the real line onto the unit circle.
If z1 is mapped onto w1, show that z1 is mapped onto 1/w1.

8. Let w be a bilinear transformation from the unit circle onto itself. If z1

is mapped onto w1, show that 1/z1 is mapped onto 1/w1.
9. Prove that the cross ratio of four distinct points is real if and only if the

four points lie on a circle or on a straight line.
10. If z1 and z2 are distinct fixed points of a bilinear transformation w =

T (z), show that the transformation may be expressed as

w − z1

w − z2
= K

z − z1

z − z2
,

where K is a complex constant.
11. If z1 ∈ C and z2 = ∞ are two fixed points of a bilinear transformation

w = T (z), show that the transformation may be expressed as

w − z1 = K(z − z1),

for some complex constant K.
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12. Show that a bilinear transformation has either 1, 2 or infinitely many
fixed points. Establish conditions for each occurrence.

13. We know that 1 and −1 are fixed points of f1(z) = z and g1(z) = 1/z.
Similarly, i and −i are the fixed points of f1(z) = z and g2(z) = −1/z.
Find a general form of the bilinear transformation which has 1 and −1
as its fixed points.

14. Prove that the bilinear transformation

w = T (z) =
(z1 + z2)z − 2z1z2

2z − (z1 + z2)
(z1 �= z2)

has the fixed points z1 and z2, and show that T (T (z)) = z.
15. Let

w1 = T1(z) =
a1z + b1

c1z + d1
and w2 = T2(z) =

a2z + b2

c2z + d2
.

Prove that (T1 ◦ T2)(z) = T1(T2(z)) is also a bilinear transformation.
16. Let T1(z), T2(z), and T3(z) be bilinear transformations. Prove that

T1(T2T3)(z) = (T1T2)T3(z).
17. For every bilinear transformation T1(z), show that there exists a bilinear

transformation T2(z) such that T1(T2(z)) = T2(T1(z)) = z, the identity
transformation.

18. Exercises 15, 16 and 17 say that the bilinear transformations form
a group under composition. Show that this group is not commuta-
tive by finding two bilinear transformations T1(z) and T2(z) such that
T1(T2(z)) �= T2(T1(z)).

19. Find all bilinear transformations mapping the imaginary axis onto the
unit circle.

20. Find a bilinear transformation f which maps the circle |z + i| = 1 onto
the real line R.

21. Show that a bilinear transformation that maps the disk |z| ≤ r1 onto
the disk |w| ≤ r2 must be of the form

w =
eiαr1r2(z − z0)

r2
1 − z0z

,

where α ∈ R and |z0| < r1.
22. Does the bilinear transformation w = R(1 + iz)/(1 − iz) map the up-

per half-plane {z : Im z > 0} onto the circle |w| < R? What bilinear
transformation maps |z| < R onto Im w > 0?

23. Show that the bilinear transformations map open sets onto open sets.
24. Suppose that L is the line passing through the points −1 and i. Are the

points z1 = 3i and z2 = 2 + i inverse with respect to the line L?
25. Determine whether the following pair of points are inverses with respect

to the given line:
(i) 3i and 2 + i with respect to the line z − iz − 1 − i = 0
(ii) 3i and 2 + i with respect to the line z + iz + 1 + i = 0.
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26. Determine the inverse point of 1 + i with respect to the circle
|z + 1 − 2i| = 2.

3.3 Other Mappings

In this section we examine the mapping properties of functions other than
bilinear transformations. Consider the function w = z2. Separating this into
its real and imaginary parts we obtain

w = u + iv = (x + iy)2 = x2 − y2 + i(2xy).

This function maps the point (a, a) in the z plane onto the point (0, 2a2) in
the w plane. That is, the ray y = x, with x > 0, is mapped onto the ray
(0, v), with v > 0; and the ray y = x, x < 0, is also mapped onto the ray
(0, v), v > 0. In other words, the line y = x is twice mapped onto the ray
(0, v), v ≥ 0 (see Figure 3.6). Observe that, unlike bilinear transformations,
the function w = z2 is not one-to-one.

Figure 3.6. Image of the line y = x under w = z2

In general the point (x, y) = (x, mx) is mapped onto the point

(u, v) = ((1 − m2)x2, 2mx2).

Since
v

u
=

2m

1 − m2
(m �= 1),

the straight line y = mx is mapped twice onto the ray

v =
(

2m

1 − m2

)
u,

where u assumes all the nonnegative real numbers if |m| < 1 and all nonposi-
tive real numbers if |m| > 1. Note that the region 0 < Arg z < π/4 is mapped
onto the first quadrant, 0 < Arg z < π/2 .
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To determine the preimage of a circle for the function w = z2, we write

u2 + v2 = (x2 − y2)2 + (2xy)2 = (x2 + y2)2.

Hence a circle in the z plane, having its center at the origin and radius r, is
mapped onto a circle in the w plane having the center at the origin and radius
r2. It is, perhaps, more natural to discuss this function in terms of its polar
coordinate representation. We have

w = z2 = [r(cos θ + i sin θ)]2 = r2(cos 2θ + i sin 2θ).

Thus a point with polar coordinates (r, θ) in the z plane is mapped onto the
point with polar coordinates (r2, 2θ) in the w plane, a point whose distance
from the origin is squared and whose argument is doubled. For instance, we
have

• the function f(z) = z2 maps the right half-plane

{z : Re z > 0} := {z = reiθ : 0 < r < ∞, |θ| < π/2}

onto the slit plane C \(−∞, 0].
• for each fixed θ0 with 0 < θ0 ≤ π/2, the function f(z) = z2 maps the

sector |Arg z| < θ0 onto the sector |Arg w| < 2θ0.

The function w = z and w = z2 both map the unit circle onto itself; but
these mappings can no more be considered identical than can the real-valued
functions y = x and y = x2, both mapping the closed interval [0, 1] onto
itself. The function w = z2 describes the unit circle twice; in fact, it maps any
semicircle centered at the origin onto a circle.

We should not leave the function w = z2 without comparing it with its
real-valued counterpart, the parabola y = x2. The line y = c in the z plane is
transformed into u = x2 − c2 and v = 2xc, from which we obtain

u =
( v

2c

)2

− c2 =
v2

4c2
− c2.

Hence the horizontal line y = c �= 0 is mapped onto the parabola

u =
v2

4c2
− c2.

If c = 0, the parabola degenerates into the ray (u, 0), u ≥ 0. In a similar
fashion, we can show that the vertical line x = a �= 0 maps onto the parabola
(see Figure 3.7)

u = −
(

v2

4a2
− a2

)
.

For n a positive integer, the function

w = zn = rn(cos nθ + i sinnθ)
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Figure 3.7. Image of lines parallel to coordinate axes under w = z2

maps the point whose distance from the origin is r onto points of distance rn,
and points whose argument is θ onto points having argument nθ. The function
f(z) = zn maps the arc

(r, θ), θ0 ≤ θ < θ0 + (2π/n),

onto a circle of radius rn centered at the origin (see Figure 3.8). Moreover,
for each fixed θ0 with 0 < θ0 ≤ π/n, we see that the function f(z) = zn

maps the sector {z : |Arg z| < θ0} onto the sector {w : |Arg w| < nθ0}.
In particular, f(z) = zn maps the sector {z : |Arg z| < π/(2n)} onto the
half-plane {w : Rew > 0}.

The function
w = z = x − iy = r(cos θ − i sin θ)

is yet another function mapping the unit circle onto itself. It maps the point
(r, θ) onto the point (r,−θ). Thus the image of the unit circle described coun-
terclockwise is the unit circle described clockwise (see Figure 3.9). Note that
the upper half-plane is mapped onto the lower half-plane.

While the composition of bilinear transformations is again a bilinear trans-
formation (Exercise 3.28(15)), the sum of bilinear transformations need not

Figure 3.8. Image of an unbounded sector under w = zn
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Figure 3.9. Image of a circle under w = z

be. The last function we will examine in this chapter is

w =
1
2

(
z +

1
z

)
.

Set z = reiθ. Then, separating this into real and imaginary parts, we have

w = u + iv =
1
2

(
z +

1
z

)

=
1
2

(
r(cos θ + i sin θ) +

1
r(cos θ + i sin θ)

)

=
1
2

(
r +

1
r

)
cos θ + i

1
2

(
r − 1

r

)
sin θ.

The unit circle |z| = 1 is mapped onto w = u = cos θ. As θ describes the
interval [0, π], u decreases continuously from 1 to −1; as θ describes the interval
[π, 2π], u describes the interval [−1, 1]. Hence the upper and lower halves of
the unit circle are both mapped onto the closed interval [−1, 1].

It is interesting to note that the points z and 1/z both map onto the same
points under this transformation. Since 1/z lies outside the unit circle if and
only if z lies inside, it suffices to study the mapping properties for |z| > 1.

From the relations

u =
1
2

(
r +

1
r

)
cos θ, v =

1
2

(
r − 1

r

)
sin θ, (3.23)

we see that, for r > 1,

(
u

1
2 (r + 1/r)

)2

+
(

v
1
2 (r − 1/r)

)2

= cos2 θ + sin2 θ = 1.

That is, the circle |z| = r > 1 is mapped onto an ellipse with major axis
along the u axis (Note also that f(z) maps the circle |z| = 1/r onto the same
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1

Figure 3.10. Image of circles under the mapping w = (z + 1/z)/2

ellipse). As r increases, the ellipse becomes more circular, and as r decreases
to 1, the ellipse degenerates to the interval [−1, 1] (see Figure 3.10). We next
determine what happens to the ray Arg z = θ. For r ≥ 1, we see from (3.23)
that the rays Arg z = 0 and Arg z = π are mapped onto themselves, although
(excluding the point at ∞) only the points (1, 0) and (−1, 0) remain fixed.
Similarly, Arg z = π/2 (r > 1) is mapped onto Argw = π/2 (r > 0) and
Arg z = −π/2 (r > 1) is mapped onto Argw = −π/2 (r > 0). For all other
values of θ we have, according to (3.23),

( u

cos θ

)2

−
( v

cos θ

)2

=
1
4

[(
r +

1
r

)2

−
(

r − 1
r

)2
]

= 1, (3.24)

which is the equation for a hyperbola. For r > 1, each arc of this hyperbola
is located in the same quadrant as the ray Arg z = θ (see Figure 3.11). To
summarize, the function

w =
1
2

(
z +

1
z

)

Figure 3.11. Image of lines under the mapping w = (z + 1/z)/2
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maps the unit circle onto the closed interval [−1, 1] twice, and all other circles
onto ellipses. It maps both the interior and exterior of the unit circle onto the
extended complex plane, excluding the real interval [−1, 1]. Finally, it maps
rays having constant arguments onto arcs of the hyperbolas.

Questions 3.29.

1. For the function w = f(z) = z2, how does the image of y = c differ from
that of y = −c?

2. What is the largest domain in which the function w = f(z) = z2 is
one-to-one?

3. Why was it is more convenient to discuss the function w = 1
2 (z + 1/z)

than w = z + 1/z?
4. When does a ray have constant argument?
5. What is the largest domain for which the function f(z) = 1

2 (z + 1/z)
will be one-to-one? Is f(z) one-to-one on the exterior domain |z| > 1?

6. How might the mapping properties of the last two sections be combined?

Exercises 3.30.

1. Show that the function w = z2 maps the hyperbolas x2 − y2 = C and
xy = K onto straight lines.

2. Find the image of the region bounded by straight lines x = 1, y = 1 and
x + y = 1 under the mapping. f(z) = z2.

3. Show that w = ((1 + z)/(1− z))2 maps the disk |z| < 1 onto the plane,
excluding the ray (u, 0), u ≤ 0.

4. Show that w = z/(1−z)2 maps the disk |z| < 1 onto the plane, excluding
the ray (u, 0), u ≤ −1

4 .
5. Show that the function w = z2 maps the disk |z − 1| ≤ 1 onto the

cardioid R = 2(1 + cos θ)
6. Discuss the mapping properties of w = z−n, n a positive integer.
7. Find a transformation which maps Ωn = {z : 0 < Arg z < π/n} (n ∈ N)

onto the unit disk |w| < 1.
8. Find the image of the sector |z| < 1, 0 < Arg z < π/n, for the function

(a) w =
zn + 1
zn − 1

(b) w =
(

zn + 1
zn − 1

)2

.

9. Find the image of the unit disk |z| ≤ 1 for the function

w = f(z) =
n∏

k=1

|zk|
zk

(
zk − z

1 − zkz

)
,

where 0 < |zk| < 1 for every k.
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Elementary Functions

Many high school students are puzzled by the following “proof”: Let a = b.
Then

a2 = ab, a2 − b2 = ab − b2, and (a + b)(a − b) = b(a − b).

Dividing by a − b, we have

a + b = b, 2b = b, and 2 = 1.

The reader, of course, is not fooled by the invalid division by zero. So let us
produce an absurdity without dividing by zero. Since 1/(−1) = (−1)/1, we
take square roots to obtain√

(1/ − 1) =
√

(−1/1),
√

1/
√
−1 =

√
−1/

√
1, and 1/i = i/1.

Cross multiplying, we have 12 = i2 or 1 = −1.
In this chapter, we will show that 1 does not really equal −1. We will also

see that the complex exponential and trigonometric functions have much in
common, and that a function having a complex exponent must be defined in
terms of a logarithm.

4.1 The Exponential Function

Recall that the real-valued function f(x) = ex has the following properties:

1. ex is continuous on R, ex > 0, e−x = 1/ex > 0,
2. ex → +∞ as x → +∞, e−x → 0 as x → +∞,
3. ex is equal to its derivative,
4. ex has the power series expansion

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · for x ∈ R,
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5. the rule of exponents,

ex1ex2 = ex1+x2 for x1, x2 ∈ R.

The function f(x) = ex maps the set of real numbers one-to-one onto the set
of positive reals. Therefore, it has a continuously strictly increasing inverse
function called natural logarithm:

ln : R+ → R; i.e., x = ln y ⇐⇒ y = ex.

Now we raise the following.

Problem 4.1. Can we extend the definition of the real exponential function
to the complex case? If so, what properties remain the same?

In defining the complex-valued function

w = f(z) = ez = ex+iy,

we would like to preserve the important properties of the corresponding real-
valued function. If the rule of the exponents is to hold, we must have

ez = ex+iy = exeiy.

It remains to give a “reasonable” definition for eiy.
If we could expand eiy in a power series similar to that of ex, we would

have

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+ · · · . (4.1)

Separating (4.1) into its real and imaginary parts, we would obtain

eiy =
(

1 − y2

2!
+

y4

4!
+ · · ·

)
+ i

(
y − y3

3!
+

y5

5!
+ · · ·

)
. (4.2)

The power series expansion in (4.2) represents the functions cos y and sin y,
respectively. This leads to the following definition:

eiy = cos y + i sin y (y real). (4.3)

We emphasize that (4.3) is a definition, and that the above argument was
introduced only to make this definition seem plausible. In Chapter 8, we will
formally prove the validity of the complex power series expansion, thus justi-
fying our definition. The familiar De Moivre law,

(cos y + i sin y)n = cos ny + i sinny,

may now be expressed as (eiy)n = einy. Note that

|eiy| =
√

cos2 y + sin2 y = 1

for any real number y.
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Remark 4.2. Setting y = π in (4.3), we obtain

eπi + 1 = 0,

which is, in the authors’ opinion, the most beautiful equation in all of math-
ematics. It contains the five most important constants as well as the three
most important operations (addition, multiplication and exponentiation). •

We now examine some of the consequences of defining ez to be the complex
number

ez = ex+iy = ex(cos y + i sin y) (4.4)

so that for z = x (x ∈ R), the definition of ez coincides with the usual
exponential function ex. For z = 0 + iy (y ∈ R), the definition agrees with
(4.3). If x = 0, we have, for any real numbers y1 and y2, the addition formula
for eiy:

eiy1eiy2 = (cos y1 + i sin y1)(cos y2 + i sin y2)
= (cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + sin y1 cos y2)
= cos(y1 + y2) + i sin(y1 + y2) = ei(y1+y2).

Using this, one can obtain the fundamental property of the exponential func-
tion, namely the addition formula,

ez1ez2 = ez1+z2 .

To see this, let z1 = x1 + iy1 and z2 = x2 + iy2. Then it follows that

ez1ez2 = ex1+iy1ex2+iy2

= ex1eiy1ex2eiy2

= (ex1ex2)(eiy1eiy2)
= ex1+x2ei(y1+y2)

= e(x1+iy1)+(x2+iy2)

= ez1+z2 ,

and the rule for exponents remains valid for complex numbers. Similarly,

ez1

ez2
= ez1−z2 , (ez1)n = enz1 for n ∈ Z

and we can get De Moivre’s formula

einθ = (eiθ)n, i.e., cos nθ + i sin nθ = (cos θ + i sin θ)n, for n ∈ Z.

Since |ez| = |exeiy| = ex|eiy| = ex, we see that ez �= 0 for any complex number
z. Moreover from the addition formula for ez, we have
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eze−z = e0 = 1.

Consequently, the inverse of ez is e−z.
Thus, most of the important properties of ex are preserved for ez. There

is, however, a notable exception. The function ez is not one-to-one. In fact for
any complex number z,

ez+2πi = eze2πi = ez(cos 2π + i sin 2π) = ez.

Next, suppose ez = ex+iy = 1. Then,

ex cos y = 1 and ex sin y = 0.

Since ex �= 0, the second relation gives

sin y = 0; that is, y = nπ, n ∈ Z.

But if we substitute y = nπ into the first equation, we get

ex cos nπ = 1,

so that n must be an even integer and in this case, x must be equal to 0.
Hence, z is an integral multiple of 2πi. That is,

ez = 1 ⇐⇒ z = 2kπi, k ∈ Z.

To summarize the above discussion we need to introduce the definition of
periodic function. A function f : C → C is called periodic if there exists a
complex number such that f(z + ω) = f(z) for all z ∈ C. The number ω is
then called a “period” of f .

Theorem 4.3. The exponential function f(z) = ez is periodic with the pure
imaginary period 2πi. That is, ez+2πi = ez for all z ∈ C.

We have ez+2kπi = ez for k ∈ Z. In view of this, for any two complex
numbers z1 and z2 for which ez1 = ez2 , we have ez1−z2 = 1. Consequently,
z1 − z2 = 2kπi, k is an integer. Hence, we have

Theorem 4.4. The equality ez1 = ez2 , for z1, z2 ∈ C, holds if and only if
z1 = z2 + 2kπi for some k ∈ Z.

If the exponential function ez assumes a value once, it must—by its
periodicity—assume the value infinitely many times. We now show that ez

assumes every finite, nonzero complex number infinitely often. If ez = a + ib,
a and b both not 0, then

ex cos y = a, ex sin y = b. (4.5)

Squaring both terms in (4.5), we obtain
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e2x(cos2 y + sin2 y) = e2x = a2 + b2.

Since the logarithm is well defined for positive real numbers, we have

x =
1
2

ln(a2 + b2).

When a �= 0, we divide the second expression by the first in (4.5) to obtain

tan y =
b

a
, i.e., y = tan−1

(
b

a

)
.

Hence

z =
1
2

ln(a2 + b2) + i tan−1

(
b

a

)

is a solution to the equation ez = a + bi. If one of the values of tan−1 (b/a)
is y0, then y0 + 2kπ, for any integer k, must also be a value. If a = 0, from
ez = 0 + ib = ib, it follows that

ex = |b|, y = arg(ez) = arg(ib),

and therefore

z =

⎧⎨
⎩

ln |b| + i
(π

2
+ 2kπ

)
if b > 0

ln |b| + i
(
−π

2
+ 2kπ

)
if b < 0

, k ∈ Z.

Example 4.5. Let ez = 5 − 5i. Then,

z =
1
2

ln[52 + (−5)2] + i tan−1

(−5
5

)

=
ln 50

2
+ i

(
−π

4
+ 2kπ

)
, k ∈ Z.

Suppose ez = −5 + 5i. Then,

z =
1
2

ln[(−5)2 + 52] + i tan−1

(
5
−5

)

=
ln 50

2
+ i

(
3π

4
+ 2kπ

)
, k ∈ N.

Note that

tan−1

(−b

a

)
�= tan−1

(
b

−a

)
. •

The definition of the exponential in terms of the trigonometric functions
suggests that the process may be reversed. From (4.3) we obtain
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e−iy = cos(−y) + i sin(−y) = cos y − i sin y. (4.6)

Subtracting or adding (4.3) and (4.6) leads to

sin y =
eiy − e−iy

2i
, cos y =

eiy + e−iy

2
.

It therefore seems natural to define the complex trigonometric functions by

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
. (4.7)

Replacing z by −z shows that

sin z = − sin(−z), cos z = cos(−z).

Note also that ez = ez. Having extended the definition of sinx and cos x, it
is of interest to note that these complex trigonometric functions do not have
any additional zeros. More precisely, we see that

sin z = 0 ⇐⇒ z = kπ for some k ∈ Z.

Indeed

sin z = 0 ⇐⇒ eiz − e−iz

2i
= 0

⇐⇒ eiz = e−iz

⇐⇒ iz − (−iz) = 2kπi for some k ∈ Z

⇐⇒ z = kπ for some k ∈ Z,

as claimed. A similar argument shows that

cos z = 0 ⇐⇒ z =
(

k +
1
2

)
π for some k ∈ Z.

Also, this result follows from the former, because cos z = sin(z +π/2). In fact,
as

ei(z+ π
2 ) = eizeiπ/2 = ieiz and e−i(z+ π

2 ) = −ie−iz,

(4.7) gives

sin
(
z +

π

2

)
=

ei(z+π/2) − e−i(z+π/2)

2i
=

ieiz − (−ie−iz)
2i

=
eiz + e−iz

2

so that, replacing z by z − π
2 and z by −z, respectively, gives

sin z = cos
(
z − π

2

)
and sin

(π

2
− z

)
= cos z.

Similarly, we have sin 2z = 2 sin z cos z because
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2 sin z cos z = 2
(

eiz − e−iz

2i

)(
eiz + e−iz

2

)
=

e2iz − e−2iz

2i
= sin 2z.

The remaining trigonometric functions are defined by the usual relations

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1
cos z

, csc z =
1

sin z
.

With these definitions, most of the familiar real-valued trigonometric prop-
erties can be extended to the complex plane. Now for the exception. The
real-valued sine and cosine functions are bounded by 1. However, neither sin z
nor cos z is bounded in the complex plane. From the triangle inequality, we
have

| sin z| =
∣∣∣∣eiz − e−iz

2i

∣∣∣∣ ≥ | |e−iz| − |eiz| |
2

=
|ey − e−y|

2
.

As z approaches infinity along the ray Arg z = π/2 or Arg z = −π/2, the ex-
pression on the right grows arbitrarily large, showing that sin z is unbounded.
Similarly,

| cos z| =
∣∣∣∣eiz + e−iz

2

∣∣∣∣ ≥ |ey − e−y|
2

,

and | cos z| also approaches ∞ as z approaches ∞ along the ray Arg z = ±π/2.
In fact, to show that sin z and cos z are not bounded in C, it suffices to observe
that

sin(iy) =
e−y − ey

2i
and cos(iy) =

e−y + ey

2
showing that each of | sin(iy)| and cos(iy) is large whenever y is large.

The identities in (4.7) may be used to find solutions for equations involving
the trigonometric functions.

Example 4.6. Let us find all the complex numbers for which cos z = 2. To
do this, by the definition of cos z, we must have

(eiz + e−iz)/2 = 2,

which leads to e2iz − 4eiz + 1 = 0, a quadratic in eiz. Solving this for eiz, we
obtain

eiz =
4 ±

√
16 − 4
2

= 2 ±
√

3.

But eiz = ei(x+iy) = e−y(cos x + i sinx) = 2 ±
√

3, which gives the relations

e−y cos x = 2 ±
√

3, e−y sin x = 0.

The second relation shows that x = nπ, n ∈ Z; and the first shows that n
must be even, so that the last relation reduces to

e−y = 2 ±
√

3.
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This gives y = − ln(2 ±
√

3). Hence cos z = 2 if and only if

z = 2kπ − i ln(2 ±
√

3) = 2kπ ± i ln(2 +
√

3), k ∈ Z.

We leave it as an exercise for the reader to show that both sin z and cos z
assume every value in the complex plane. •

Finally, as in the real case, we define the hyperbolic sine and hyperbolic
cosine functions by the formulas,

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, z ∈ C. (4.8)

As an immediate consequence of (4.8), we have the relations

sinh z = −i sin iz, cosh z = cos iz.

Observe that

sinh(−z) = − sinh z and cosh(−z) = cosh z.

Note also that both sinh z and cosh z are periodic, with period 2πi. We may
also define

sech z =
1

cosh z
, csch z =

1
sinh z

, tanh z =
sinh z

cosh z
, coth z =

1
tanh z

.

Questions 4.7.

1. For what functions f(z) will ef(z) be periodic?
2. What is the largest region in which ez is one-to-one?
3. What is the largest region in which ez is bounded?
4. What is the largest region in which sin z is bounded?
5. When does ef(z) = ef(z)? Does sin(iz) = sin z? Does cos(iz) = cos z?
6. When does ef(z) = ef(z)? Does sin(iz) = sin z? Does cos(iz) = cos z?
7. When does cos z1 = cos z2? When does cos z1 + cos z2 = 0? When does

sin z1 = sin z2? When does sin z1 +sin z2 = 0? When does ez1 +ez2 = 0?
8. Are there any trigonometric identities, valid for real variables, that are

not valid in the complex plane?
9. How do | sin z| and sin |z| compare?

10. How do | sin z| and | sinh z| compare?
11. What happens to ez as z → ∞ along different rays? What about ez +z?
12. Are the zero sets of sin z in C, and sinx in R the same?
13. Are the zero sets of cos z in C, and cosx in R the same?
14. Does the equation tan z = i have a solution in C?
15. For what values of z is | sin z| ≤ 1?
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Exercises 4.8.

1. Find all values of z for which
(a) e3z = 1 (b) ez2

= 1 (c) eez

= 1.
2. Show that all the zeros of sin z and cos z are real.
3. (a) Show that both sin z and cos z are unbounded on the ray Arg z = θ,

0 < |θ| < π.
(b) Show that sin z is bounded only on sets contained in a horizontal

strip.
4. For |z| = r, prove that

(a) e−r ≤ |ez| ≤ er

(b) e−rn ≤ |ezn| ≤ ern, n a positive integer.
When will equality hold?
5. Prove the following identities:

(a) sin2 z + cos2 z = 1
(b) sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

(c) cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.
Note: From (a) it appears that both sin z and cos z are bounded. But
we have already shown that this is not the case!

6. (a) Separate e1/z, z �= 0 into its real and imaginary parts.
(b) Show that |e1/z| is bounded in the region |z| ≥ ε, ε > 0.

7. (a) Prove that eiz is periodic, with period 2π.
(b) For an arbitrary nonzero complex number a, show that eaz is peri-

odic, and find its period.
8. Prove the following inequalities:

(a) |ez + ez2 | ≤ ex + ex2−y2

(b) |eiz + eiz2 | ≤ e−y + e−2xy

(c) | sin z|2 + | cos z|2 ≥ 1.
9. Prove the following hyperbolic identities:1

(a) cosh2 z − sinh2 z = 1
(b) sinh(z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2

(c) cosh(z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2

(d) sinh z = sinhx cos y + i cosh x sin y
(e) cosh z = cosh x cos y + i sinhx sin y
(f) | sinh z|2 = sinh2 x + cos2 y
(g) | cosh z|2 = sinh2 x + cos2 y.

10. Show that
(a) | sin z|2 = sin2 x + sinh2 y
(b) | cos z|2 = cos2 x + sinh2 y.

11. Prove that tanh z = (sinh z)/(cosh z) is periodic, with period πi.

1 The hyperbolic identity (a) clarifies somewhat the adjective “hyperbolic” if one
recalls that x2 − y2 = 1 is the equation of a hyperbola in R2.
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4.2 Mapping Properties

The real and imaginary parts of the nonzero complex number z = x + iy are
“equally” important in determining its position in the plane. We have

|z| =
√

x2 + y2 and tan(arg z) =
y

x
.

The real and imaginary parts of z = x + iy play independent roles, however,
in determining the position of the point ez in the w plane. Separating the
function w = ez into its real and imaginary components, we have

w = ez = u + iv = exeiy,

from which we obtain

|ez| = ex, tan(arg(ez)) =
v

u
= tan y.

These relations show that the modulus of ez depends only on the real part of
z, while the argument of ez depends only on the imaginary part of z. Indeed,
as ez = exeiy, one has

arg(ez) = y + 2kπ, k ∈ Z.

It will therefore be of some interest to determine the image of the lines parallel
to our coordinate axes, but first we will make use of the periodicity of the
exponential. We have already seen that

e2kπi = 1, ezew = ez+w and ez+2kπi = ez for every z ∈ C and k ∈ Z,

so that the points x0 + i(y0 + 2kπ) have the same image for every integer k.
Hence we may examine the mapping properties by restricting ourselves to the
infinite strip −π < Im z ≤ π. Whatever occurs in this strip will also occur in
the strip −π + 2kπ < Im z ≤ π + 2kπ. With this restriction, Arg (ez) = y,
−π < y ≤ π. We have the following:

• Since ez has constant modulus, all the points on the line x = x0 are
mapped onto the points equidistant from the origin. In particular, the
line segment x = x0, −π < y ≤ π, is mapped one-to-one onto the circle
in the w plane having center at the origin and radius ex0 . As y increases
from −π to π, the circle is described in a counterclockwise direction.

• Since |ez| = ex > 1 if and only if x > 0, the semi-infinite-strip
{z : Re z > 0, −π < Im z ≤ π} is mapped one-to-one onto {w : |w| >
1}, while the strip {z : Re z < 0, −π < Im z ≤ π} is mapped onto the
punctured unit disk {w : 0 < |w| < 1} (see Figure 4.1).

• As |ez| = ex < 1 if and only if x < 0, the semi-infinite strip

{z : Re z < 0, 0 ≤ Im z ≤ π}

is mapped one-to-one onto the upper semi-disk {w : Imw ≥ 0, |w| < 1}
excluding the origin.
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Figure 4.1. Image of line segments parallel to coordinate axes under ez

As already noted, Re z plays no role in determining the argument of ez.
Hence the points with identical imaginary parts will map onto the points
having the same argument. For the line y = y0, −π < y0 ≤ π, we have

w = ez = ex+iy0 = ex(cos y0 + i sin y0).

• Since ex describes the positive reals, the line y = y0 is mapped one-to-
one onto the ray Argw = y0. Therefore, the infinite strip

{z : 0 < Im z < π}

is mapped one-to-one onto the upper half-plane {z : Im z > 0}, while
the strip

{z : −π < Im z < 0}
is mapped onto the lower half-plane {z : Im z < 0} (see Figure 4.2).

Figure 4.2. Image of lines parallel to the real axis under ez

• Note that the x axis, y = 0, is mapped onto the positive real axis and
the line y = π is mapped onto the negative real axis. Hence, under the
exponential function ez, the strip

{z : −π < Im z ≤ π}

is mapped one-to-one onto the punctured w plane, C \ {0}.



102 4 Elementary Functions

Figure 4.3. Image of a rectangle under ez

We can combine the two previous mappings to determine the image of the
rectangles for the function w = ez. Writing the image in the polar form, we
have the rectangle

{z : A ≤ x ≤ B, −π < C ≤ y ≤ D ≤ π}

being mapped onto the region

{Reiθ : eA ≤ R ≤ eB , C ≤ θ ≤ D},

bounded by arcs and rays (see Figure 4.3).
Next consider a straight line not parallel to either of the coordinate axes.

The image of this line will have neither constant modulus nor constant ar-
gument, yet it must grow arbitrarily large as x grows arbitrarily large, and
must make a complete revolution each time y increases by 2π, thus producing
a spiraling effect. If y = mx + b, m �= 0, then

w = ez = ex+i(mx+b).

Hence |ez| = ex and arg(ez) = mx + b + 2kπ, k an integer. In polar form, we
may write w = Reiθ, with{

R = |ez| = ex

θ = Arg (ez) = mx + b + 2kπ,
(4.9)

where k = k(x) is an integer chosen so that θ always satisfies the inequality
−π < θ ≤ π. Since x describes the set of real numbers, k must describe the
set of integers. Eliminating x from the relations in (4.9), we obtain

R = e(θ−b−2kπ)/m = e−b/me(θ−2kπ)/m. (4.10)

Letting α = θ − 2kπ in (4.10), we have
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Figure 4.4. Logarithmic spiral

R = Keα/m, (4.11)

where K is a positive constant and α describes the set of real numbers.
Equation (4.11) represents what is known as a logarithmic spiral. In Fig-

ure 4.4 we show the image of one segment of a line, and in Figure 4.5 we show
a more complete picture.

Figure 4.5.

Since the argument of iz and the argument of z differ by π/2, we expect
the function w = eiz to maps lines parallel to the y axis (x axis) onto the
same kind of figure as the function w = ez maps lines parallel to the x axis
(y axis). Setting

w = eiz = ei(x+iy) = e−y+ix,

we see that
|eiz| = e−y and arg(eiz) = x + 2kπ.

Hence the line segment −π < x ≤ π, y = y0, is mapped onto the circle having
center at the origin and radius e−y0 . The semi-infinite strip,

{z : −π < x ≤ π, y > 0},
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Figure 4.6. Image of the line x = a under eiz

is mapped onto the interior of the punctured unit disk, while the strip

{z : −π < x ≤ π, y < 0},

is mapped onto its exterior (see Figure 4.6). Also, the line x = x0, −π < x0 ≤
π, is mapped onto the ray Argw = x0.

We will use these mapping properties of the exponential to determine those
of the trigonometric functions. We will now discuss the complex mapping w =
cos z of the z-plane onto the w-plane. As was the case with the exponential,
we wish to restrict cos z to a region where the function is one-to-one. Because
cos z is periodic with a real period of 2π, this function assumes all values in
any infinite vertical strip {z : α < Re z ≤ α + 2π}. Therefore, it suffices to
study the mapping w = cos z on the strip where α is fixed to be −π. That
is on the strip {z : −π < Re z ≤ π}. Note that cos (π/2) = 0 = cos (−π/2)
showing that cos z is not one-to-one on this region. Moreover, cos z is an even
function; that is, cos z = cos(−z). This means that the points in the first and
fourth quadrants (second and third quadrants) have identical images. Also, it
follows that the image of the strip {z : −π < Re z < 0} is the same as that
of the strip {z : 0 < Re z < π}, under w = cos z. Hence the image of any set
contained in the semi-infinite strip

{z : −π < Re z ≤ π, Im z > 0}

will be duplicated in any semi-infinite strip of the form

{z : (k − 1)π < Re z ≤ (k + 1)π, ±Im z > 0}.

Since cos z is real if and only if z is real, it suffices to consider the mapping
defined in the region

{z : −π < Re z ≤ π, Im z > 0} ∪ {z : 0 ≤ Re z ≤ π, Im z = 0},
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where the function w = cos z is one-to-one.
Recall that the function w = (1/2)(z + 1/z) maps circles onto ellipses and

rays onto arcs of hyperbolas. We may view the transformation

w = cos z =
1
2

(
eiz +

1
eiz

)

as successive mappings from the z plane to the ζ plane and the ζ plane to the
w plane, where

ζ = eiz = e−yeix.

For any y0 > 0, the line segment −π < x ≤ π, y = y0, in the z plane is
mapped onto the circle |ζ| = e−y0 in the ζ plane. Then the function

w =
1
2

(
ζ +

1
ζ

)
:=

1
2
(
e−y0eix + ey0e−ix

)
maps the circle |ζ| = e−y0 in the ζ plane onto the ellipse

(
u

1
2 (e−y0 + ey0)

)2

+
(

v
1
2 (e−y0 − ey0)

)2

= 1

in the w plane. Hence, w = cos z maps the line segment −π < x ≤ π, y0 > 0
onto an ellipse (see Figure 4.7).

Figure 4.7. Image of the line segment −π < x ≤ π, y0 > 0 under cos z

Similarly, for y > 0, the half-line {z = x0+iy : y > 0} (where x0 ∈ (−π, π)
is fixed), is mapped onto the line segment

Arg ζ = Arg (e−yeix0) = x0, 0 < |ζ| < 1,

which, in turn, is mapped onto an arc of the hyperbola (see Figure 4.8)

(
u

cos x0

)2

−
(

v

sin x0

)2

= 1.
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Figure 4.8. Illustration for mapping properties of cos z

Remark 4.9. For y > 0, the above mappings are not valid for the half-lines
x = 0, x = π, or x = ±π/2. If x = 0,

cos z =
1
2
(e−y + ey)

is mapped onto the real interval u > 1, while the half-line x = π gives

cos(π + iy) = −1
2
(e−y + ey)

so that under w = cos z, x = π is mapped onto the real interval u < −1.
Similarly, for y > 0, as

cos
(π

2
+ iy

)
=

i

2
(e−y − ey)

and
cos

(
−π

2
+ iy

)
= − i

2
(e−y − ey),

the half-line x = π/2 is mapped onto the negative imaginary axis, and the
half-line x = −π/2 is mapped onto the positive imaginary axis. Finally, as

cos(x + i0) =
eix + e−ix

2
,

the interval 0 ≤ x ≤ π, y = 0, is mapped onto the real interval −1 ≤ u ≤ 1,
v = 0. •

The identity

sin z = cos
(
z − π

2

)
(4.12)
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enables us to deduce mapping properties of sin z from those of cos z. Equation
(4.12) shows that we may view the transformation w = sin z as the translation
from the z plane to the ζ plane, where ζ = z − π/2, followed by the mapping
w = cos ζ. Thus the function

w = sin z

maps points in the region −π/2 < Re z ≤ 3π/2 in the same manner as

w = cos z

maps the point in the region −π < Re z ≤ π.
For instance, the function w = cos z maps the line segment

−π < x ≤ π, y = 1,

onto the ellipse
u2

1
4 (e + 1/e)2

+
v2

1
4 (e − 1/e)2

= 1.

The function w = sin z maps the line segment −π/2 < x ≤ 3π/2, y = 1, onto
the same ellipse.

Finally, we remark that the relationship between the complex trigonomet-
ric and hyperbolic functions, for example,

cos(iz) = cosh z and sin(iz) = i sinh z,

allow us to discuss the action of hyperbolic functions as complex mappings.

Questions 4.10.

1. What kind of function might map the complex plane, excluding the
origin, onto the strip {w : −π < Im w ≤ π}?

2. Given a point in the z plane, does there always exist a neighborhood of
that point in which the function ez is one-to-one?

3. How would you describe the behavior of ez as z approaches ∞?
4. For the function ez, how does the area of a rectangle compare with the

area of its image?
5. For the function cos z, how does the area of a rectangle compare with

the area of its image?
6. For the function ez, how does the slope of a straight line affect the

logarithmic spiral onto which it is mapped?
7. What functions, other than ez, are never zero in the plane?
8. What is the largest region in which sin z is one-to-one?
9. Given a point in the z plane, does there always exist a neighborhood of

that point in which the function sin z is one-to-one?
10. What are the differences between the functions w = cos(z − π/2) and

w = cos z − π/2?
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11. What is the image of the infinite strip {z : 0 ≤ Im z ≤ π} under the
mapping w = ez?

12. What is the image of the infinite strip {z : 0 ≤ Im z ≤ π/2} under the
mapping w = ez?

13. What is the image of the disk {z : |z| ≤ π} under the mapping w = ez?

Exercises 4.11.

1. Find the image of the following sets under the transformation w = ez,
and sketch:
(a) −5 ≤ x ≤ 5, y = π/4
(c) −2 < x < 1, 0 < y < π

(b) x = 3, −π/2 < y < π/2
(d) x < 1, −π/3 < y < 2π/3.

2. Find the image of the region 0 ≤ x ≤ π, y ≥ 0, for the transformation
(a) w = eiz (b) w = ieiz (c) w = ie−iz.

3. Find the images of the straight lines for the transformation w = ecz, c
a complex constant.

4. Show that the image of the disk |z| ≤ 1 under the transformation w = ez

is contained in the annulus 1/e ≤ |w| ≤ e.
5. Show that the image of the disk |z| ≤ 1 under the transformations

w = cos z and w = sin z are contained in the disk |w| ≤ (e2 + 1)/2e.
6. Find the image of the following sets under the transformation w = cos z.

(a) x = π
2 , y ≥ 0

(c) 0 ≤ x < π, −2 < y < 2
(b) − π

4 < x < π
4 , y = −5

(d) − π
2 < x < π

4 , y > 0.

4.3 The Logarithmic Function

Before defining the logarithm of a complex number, we review some properties
of the real-valued logarithm. For every positive real number x, there exists a
unique real number y such that ey = x. We write y = lnx, and observe that
for x1, x2 > 0, we have

ln(x1x2) = lnx1 + lnx2.

The function y = lnx maps the positive real numbers onto the set of reals,
and is the inverse of the function y = ex, which maps the real numbers onto
the positive reals (see Figure 4.9). Since ex is one-to-one, its inverse is also a
one-to-one function.

There is a problem in defining the logarithm of a complex number z as
the value w for which

ew = z.

We know that for z = 0 this equation has no solution in C because if w = u+iv,
then one has

|ew| = |eu+iv| = eu > 0.

Thus, ew never assumes zero in C. Further, the expression
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Figure 4.9. Mappings of ex and log x for x real

ew = eueiv

clearly shows that the range of ew is C \ {0}. The periodicity of the complex
exponential precludes the existence of a unique complex logarithm. For, if
ew = z, then ew+2kπi = z for any integer k. We thus define the logarithm of
a complex number z, denoted by log z, as the set of all values w = log z for
which ew = z. Thus, as in the real case, for z �= 0

w = log z ⇐⇒ ew = z; or log z ∈ {w : ew = z}.
Since the exponential function never vanishes, there is no logarithm associ-
ated with the complex number zero; and since the exponential assumes every
nonzero complex number infinitely often, there are infinitely many values of
the logarithm associated with each nonzero complex number. More precisely,
we have

Proposition 4.12. Given z �= 0, the most general solution of ew = z is given
by

w = log z = ln |z| + i(Arg z + 2kπi) := ln |z| + i arg z, k ∈ Z. (4.13)

(Remember that there is no solution to ew = 0).

Proof. Setting z = reiθ (r > 0, θ = Arg z), we conclude from

ew := eueiv = z = reiθ

that eu = r and eiv = eiθ, or equivalently

u = ln r and v = θ + 2kπ, k ∈ Z,

where ln r is the natural logarithm, to the base e, of a positive real number.
Therefore, we have the expression

w = u + iv = log z := ln |z| + i(Arg z + 2kπ), k ∈ Z

which has infinitely many values at each point z �= 0.
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Remark 4.13. The exponential function ez has one more important special
property. Recall that

ex → +∞ as x → +∞.

Is this true if we replace the real x by a complex z? The answer is clearly no!
Indeed, given 0 �= z ∈ C, there exists a w such that ew = z. But then

ew+2kπi = z

holds for every k ∈ Z. Hence we can obtain w having arbitrarily large modulus
|w| such that ew = z. As a consequence, we conclude that limw→∞ ew does
not exist. Note that

lim
w=u
u→∞

ew = ∞, lim
w=u<0,
u→−∞

ew = 0

whereas the limit
lim
w=iv
v→∞

ew = lim
v→∞ eiv

does not exist. (For instance, both vn = nπ and v′
n = nπ + π/2 approach ∞

as n → ∞ but eivn = (−1)n and eiv′
n = 0). •

Since log z is not a uniquely defined function of z, it is appropriate to
introduce the principle value of log z for z �= 0. For z �= 0,

ln |z| + iArg z

is called the principle value of log z and is denoted by Log z:

Log z = ln |z| + iArg z.

Using this we can rewrite (4.13) in the form

log z = Log z + 2kπi, k ∈ Z.

We remark that the expression w = log z, z �= 0, is our first example of a
multiple-valued function, a relation in which there is more than one image
associated with a complex value. Note that the multiple-valuedness of the
logarithm is related to the many values connected with the argument of a
complex number.

Our methods of investigating continuity and other properties for single-
valued functions cannot be used for multiple-valued functions. Fortunately,
a multiple-valued function can quite naturally be replaced by many different
single-valued functions. The nature of multiple-valued function may then be
examined from the point of view of its single-valued counterparts.

We define a branch of log z to be any single-valued function log∗ z that
satisfies the identity elog∗ z = z for all nonzero complex values of z. There are
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infinitely many branches associated with the multiple-valued function log z.
Each is an inverse of the function ez.

Among all the branches for log z, there is exactly one whose imaginary part
(arg z) is defined in the interval (−π, π]. This branch is called the principal
branch of log z and is Log z. Every branch of log z differs from the principal
branch by a multiple of 2πi. That is, if log∗ z is a fixed branch, then

log∗ z = Log z + 2kπi (4.14)

for some integer k. Note that

Log z = ln |z| + iArg z (−π < Arg z ≤ π). (4.15)

The restriction in (4.15) may be viewed geometrically as a cut of the z-plane
along the negative real axis. This ray is then called the branch cut for the
function Log z. Other branches of log z may be defined by restricting arg z to

(2k − 1)π < arg z ≤ (2k + 1)π, k an integer.

The “cut line” may not be crossed while continuously varying the argument
of z without moving from one branch to another, which would destroy single-
valuedness.

Undue importance should not be placed on the restrictions of the argument
in (4.15) to the interval (−π, π]. For a fixed α real, the function

logα z = ln |z| + i arg z (α < arg z ≤ α + 2π),

which has branch cut arg z = θ + 2π, would serve our purposes just as well.
Indeed, a branch cut need not even be confined to a ray. Any continuous
nonself-intersecting curve that extends from the origin to infinity would do.

We next examine the extent to which the identity

log(z1z2) = log z1 + log z2 (z1, z2 �= 0)

is valid in the complex plane. For a fixed branch, we have

log(z1z2) = ln |z1z2| + i arg(z1z2)

and

log z1 + log z2 = ln |z1| + ln |z2| + i(arg z1 + arg z2)
= ln |z1z2| + i(arg z1 + arg z2).

As we have seen in Section 1.3, arg(z1z2) differs from arg z1 + arg z2 by an
integer multiple of 2π. Thus, the best we can do is

log(z1z2) = log z1 + log z2 + 2kπi
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or
log(z1z2) = log z1 + log z2 (mod 2πi).

When the cut is along the negative real axis, the branch of the logarithm under
consideration is completely determined by specifying one particular value of
the function. For instance, the principal branch is the only one for which
log 1 = 0. The branch for which log 1 = 10πi is given by

log z = Log z + 10πi.

Each of the functions w = Log z +2kπi maps the plane, excluding the origin,
onto the infinite strip (2k−1)π < Im w ≤ (2k+1)π. Recall that the exponential
function maps each strip

(2k − 1)π < Im w ≤ (2k + 1)π

onto the punctured plane. Since the behavior of each function defined in (4.14)
is essentially the same, we will—unless otherwise stated—assume k = 0 and
confine ourselves to the principal branch of the logarithm.

The function w = Log z is not continuous at any point on the negative
real axis. For any such point may be expressed as

z0 = r0e
πi, r0 > 0,

with Log z0 = ln r0 + iπ. But as the point z0 is approached through values
below the real axis, we have

lim
z→z0

Arg z = −π.

Hence,
Log z → ln r0 − iπ �= Log z0 as z → z0

through such values.
This does not mean that the logarithm function is not continuous on the

negative real axis. All we have seen is that Log z, the principal branch, is not
continuous at these points. By making our cut along a different ray, we can
find a branch of the logarithm that is continuous for negative real values. For
instance, the single-valued function

w = log z = ln |z| + i arg z (−π/2 < arg z ≤ 3π/2)

is continuous at all points on the negative real axis, but not on the ray arg z =
3π/2.

In other words, the logarithm function is continuous for all nonzero com-
plex values in the following sense: Given z0 �= 0, there exists a branch for which
limz→z0 log z = log z0. However, there does not exist a branch for which log z
is continuous for all nonzero complex numbers.

In view of (4.15), we can easily determine some mapping properties of the
logarithm function. The image of the circle |z| = r for the function w = Log z
is the line segment u = ln r, −π < v ≤ π (see Figure 4.10). We also have the
ray Arg z = θ mapping onto the line v = θ (see Figure 4.11).
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Figure 4.10. Image of an annulus region under Log z

Figure 4.11. Image of segment of rays under Log z

Questions 4.14.

1. What is the relationship between the argument and the logarithm of a
complex number?

2. For fixed θ0, what changes will occur if we define θ0−π < arg z ≤ θ0 +π
to be the principal value?

3. What would be the consequences of defining log 0 = ∞?
4. What is the image of spirals under the function w = log z?
5. In what regions is log z bounded?
6. Does log(z1/z2) = log z1 − log z2?
7. Does Log (z1/z2) = Log z1 − Log z2?
8. Does limz→∞ exp (−z2) exist? Does limz→∞ exp (−z4) exist?
9. Does limz→0 exp (−1/z) exist? Does limz→0 exp (−1/z2) exist? How

about limz→0 exp (−1/z3)? Does limz→0 exp(−1/z4) exist?

Exercises 4.15.

1. Find all the values of
(a) log(1 − i) (b) log(3 − 2i) (c) log(x + iy).

2. For any nonzero complex number z1 and z2, prove that

Log (z1z2) = Log z1 + Log z2 + 2kπi,
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where k = 0, 1,−1. Give examples to show that each value of k is pos-
sible.

3. For z �= 0, prove that ln |z| ≤ |Log z| ≤ ln |z| + |Arg z|.
4. Let f(z) be defined in a domain D with f(z) �= 0 in D. Prove that

Arg f(z) = Im Log f(z) for every point z ∈ D.
5. Find the image of straight lines parallel to the coordinate axes for the

function
(a) w = Log (iz) (b) w = Log (−iz) + 1 (c) w = Log z2.

6. Set z = reiθ, where 0 < a < r < b and θ ∈ (−π, π). Show that under the
mapping Log z the region Ω = {z : a < |z| < b} \ [−b,−a] is mapped
onto the rectangle (ln a, ln b) × (−π, π).

4.4 Complex Exponents

As we have seen in Section 1.3 there are n distinct complex values associated
with z1/n, z �= 0. If we write z = reiθ, then

zk = r1/nei[(θ+2kπ)/n]

is a distinct nth root for k = 0, 1, 2, . . . , n − 1. The values of z1/n vary as
the argument of z takes on the values θ, θ + 2π, θ + 4π, . . . , θ + 2(n − 1)π.
A unique value for z1/n may be obtained by restricting arg z to a particular
branch. This seems to indicate a link between the nth roots and logarithm of
a nonzero complex number.

Indeed, we may define the function z1/n by

w = z1/n = e(1/n) log z = e(1/n)(ln |z|+i arg z). (4.16)

This function, like the logarithm function, is multiple-valued. Upon setting
arg z = Arg z + 2kπ, k an integer, we see that (4.16) assumes different values
for k = 0, 1, . . . , n − 1; for any other integer k, one of these n values will be
repeated. More generally, if m and n are positive integers with no common
factors, we define

(z1/n)m = e(m/n) log z, z �= 0.

This, too, has n distinct values. We are thus led quite naturally to define zα

for complex values of α by

zα = eα log z. (4.17)

If α is not a rational number, then there are infinitely many values associated
with the expression in (4.17). To see this, we first suppose that α is irrational.
Then for z = reiθ �= 0, we have

zα = eα log z = eα[ln r+i(θ+2kπ)] = rαeiαθei(2kπα).
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Since
ei(2k1πα) = ei(2k2πα) ⇐⇒ α(k1 − k2) = m (m ∈ Z),

we see that α is real rational number which is a contradiction. It follows that
zα has infinitely many distinct values, all with the same modulus.

Next suppose that α = a + ib (a and b real, b �= 0). Then

za+ib = e(a+ib) log z = ea ln r−b(θ+2kπ)ei(b ln r+aθ+2kπa).

Since |za+ib| = rae−b(θ+2kπ), the complex number za+ib has a different modu-
lus for each branch, any two of which differ by a factor of e−2nπ, n an integer.

Examples 4.16. We have

(i) 51/2 = e(1/2) log 5 = e(1/2)(ln 5+2kπi) = e(1/2) ln 5ekπi = ±
√

5
(ii) i1/2 = e(1/2) log i = e(1/2)i(π/2+2kπ) = ±eπi/4 = ±

√
2

2 (1 + i)
(iii) ii = ei log i = ei[ln 1+i(π/2+2kπ)] = e−(π/2+2kπ),

where k is any integer. •
Example 4.17. To find all possible solutions of z1−i = 4, we rewrite z1−i = 4
as

e(1−i) log z = 4 = eln 4+2kπi (k ∈ Z)

so that

(1 − i) log z = 2 ln 2 + 2kπi, i.e., log z = [ln 2 − kπ] + i[ln 2 + kπ].

By the definition of log z, we have

z = e[ln 2−kπ]+i[ln 2+kπ], k ∈ Z.

Simplification of this relation shows that the solutions of z1−i = 4 are given
by z = 2e−kπei[ln 2+kπ], k ∈ Z. •
Remark 4.18. In some contexts, the expression x1/2 and

√
x are used inter-

changeably. By x1/2(x > 0), we mean both the positive real number +
√

x and
the negative real number −√

x. •
It is of interest to compare the relationship between zαzβ and zα+β , where

z = reiθ (r �= 0). If α and β are real, then

zαzβ = eα log zeβ log z = e(α+β) ln rei(α+β)θe2πi(kα+nβ),

where k and n are integers. On the other hand,

zα+β = e(α+β) log z = e(α+β) ln rei(α+β)θe2πim(α+β)

for m an integer. Thus, if α and β are integers, zαzβ = zα+β . If either α or
β is an integer, then zαzβ and zα+β assume the same set of values, although
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equality for each α and β need not hold. In general, zα+β assumes every
value of zαzβ , but the converse is not true. For example 51/2+1/2 = 5 but
51/251/2 = ±5. We leave it for the reader to show this containment for α and
β complex numbers.

Recall the “proof” in the introduction that 1 = −1, where we made the
false assumption that √

1/ − 1 =
√

1/
√
−1.

Had we used the preceding results, we would have been able to reach only the
much less interesting conclusion that ±1 = ±1.

As was the case with the logarithmic function, we may replace multiple-
valued functions that have fractional exponents with (single-valued) branches.
To illustrate, for z = reiθ (r �= 0,−π < θ ≤ π) the principal branch of z1/2 is

w0 = z1/2 = e(1/2)(ln r+iθ) =
√

rei(θ/2) (−π < θ ≤ π).

Another branch of the function is

w1 = z1/2 = e(1/2)(ln r+i(θ+2π)) = −
√

rei(θ/2) (π < θ + 2π ≤ 3π).

Both w0 and w1 are continuous functions, except on the negative real axis.
This ray is called a branch cut for both w0 and w1. Each of these single-valued
functions is called a determination or branch of the multiple-valued function
w = z1/2.

We now establish some mapping properties for the functions w0 and w1.
The punctured plane (z �= 0) is mapped by w0 onto the right half-plane,
including the positive imaginary axis, and by w1 onto the left half-plane,
including the negative imaginary axis. These functions also map circles onto
semicircles, excluding the end point (see Figure 4.12).

Figure 4.12. Mapping properties of square root function

We may similarly analyze other multiple-valued functions with rational
exponents. The function w = z1/3 has three branches. We write

wk = 3
√

rei(θ+2kπ)/3 (k = 0, 1, 2;−π < θ ≤ π).
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Each of these three single-valued functions is continuous except on the nega-
tive real axis, and maps the circle |z| = r onto the arc

|wk| = 3
√

r,
(2k − 1)π

3
< Argwk ≤ (2k + 1)π

3
.

The next example illustrates some of the surprising properties of complex
exponents. Consider the function w = 1z. We have

w = 1z = ez log 1 = e2kπiz = e2kπi(x+iy) = e−2kπye2kπix.

For each integer k, the function w = 1z is defined in the whole plane. If k = 0,
the principal branch of the logarithm, then w ≡ 1. This is what we expect.

But consider a different determination of the logarithm, and assume that
k = k0, k0 > 0. The function w = 1z is then periodic, with period 1/k0. If z
is a positive integer, then 1z = 1. If z is real, then 1z is a point on the unit
circle. In fact, every interval of the form

x0 −
1

2k0
< x ≤ x0 +

1
2k0

, x0 fixed,

maps one-to-one onto the unit circle. The line segment

− 1
2k0

< x ≤ 1
2k0

, y = y0,

maps onto the circle |w| = e−2k0πy0 . The line

x = x0, − 1
2k0

< x0 ≤ 1
2k0

,

maps onto the ray Argw = 2k0πx0. Hence the infinite strip{
z : − 1

2k0
< Re z ≤ 1

2k0

}

maps onto the plane, excluding the origin. Finally, the upper half-plane is
mapped onto the interior of the punctured unit disk, and lower half-plane
onto its exterior (see Figure 4.13).

We have previously examined the close relation between the exponential
and trigonometric functions. It is not surprising that their inverses also have
much in common. We will show that the inverse trigonometric functions may
be defined in terms of logarithm.

Given a complex number z, we wish to find all the complex numbers w
such that z = sinw. If w0 is one such solution, then w0 + 2kπ must also be a
solution. If

z = sinw = (eiw − e−iw)/2,

then
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Figure 4.13. Illustration for mapping properties of 1z

e2iw − 2izeiw − 1 = 0,

a quadratic in eiw. Solving, we obtain

eiw = iz + (1 − z2)1/2; i.e., iw = log[iz + (1 − z2)1/2],

from which we define the multiple-valued function

w = sin−1 z = −i log[iz + (1 − z2)1/2].

Remark 4.19. The expression (1 − z2)1/2 is itself multiple-valued. To com-
pute sin−1 z, we must first find each of the values of (1 − z2)1/2. For each of
these values, we must then determine all the logarithms. •
Example 4.20. To find all possible determinations of sin−1 0, we write

sin−1 0 = −i log 11/2 = −i
2kπi

2
= kπ, k ∈ Z.

For the principal branch, k = 0 and sin−1 0 = 0. •
Example 4.21. To find all possible determinations of sin−1 i, we write

sin−1 i = −i log(−1 + 21/2)

= −i
[
ln | − 1 ±

√
2| + i arg(−1 ±

√
2)
]

= arg(−1 ±
√

2) − i ln | − 1 ±
√

2|.

Given any determination for the square root and logarithm, the real part of
sin−1 i is an integral multiple of π. The imaginary part depend only on the
determination of the square root. Hence



4.4 Complex Exponents 119

sin−1 i = kπ − i ln | − 1 ±
√

2|, k ∈ Z.

A choice of the positive square root and the principal value for the logarithm
gives the specific determination sin−1 i = −i ln(

√
2 − 1).

We may similarly find the inverses of the remaining trigonometric func-
tions. For z = cos w = (eiw + e−iw)/2, we have

w = cos−1 z = −i log[z + (z2 − 1)1/2]. •
Questions 4.22.

1. Does log zα = α log z if α = 0?
2. Does 11/2 + 11/2 = 2(11/2)?
3. When will a complex number to a complex power be real?
4. If zα assumes m distinct values and zβ assumes n distinct values, what

can we say about zαzβ?
5. For the complex number α and β, how does zαβ compare with (zα)β?
6. For the multiple-valued function w = z1/2, why does the origin play

such an important role?
7. For the function w = z1/2, could we have chosen any rays other than

Arg z = π for our branch cut?
8. How do the functions w = z1/n and w = zn compare?
9. Does (zm)1/n = (z1/n)m when m and n are integers?

10. When is
√

z2 = z? Is (z2)1/2 = z?
11. In what regions are the inverse trigonometric functions one-to-one?
12. How can mapping properties of the inverse trigonometric functions be

determined from those of the trigonometric functions?
13. If | cos z| ≤ 1, then what can you say about z?
14. If cos z = α, where −1 ≤ α ≤ 1, then what can you say about z?
15. If log 4 is real, what must be the value of log(4i)? What must be the

value of log(−4i)?

Exercises 4.23.

1. Find all values for the following expressions.
(a) 5i (b) (πi)e (c) (2i)i (d) log(1+i)πi.

2. For z �= 0, α and β complex numbers, show that every value of zαβ is a
value of (zα)β . When is the converse true?

3. For z �= 0 and α irrational, show that θ0 < Arg (zα) < θ0+ε for infinitely
many values of zα, where −π < θ0 < π and ε > 0.

4. Separate into real and imaginary parts.

(a) xx (x real, x �= 0) (b) (iy)iy (y real, y �= 0) (c) zz (z �= 0).
5. For any nonzero complex number a, show that az is either constant or an

unbounded function, depending on the branch chosen for its logarithm.
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6. Discuss the image of the circle |z| = r for the following multiple-valued
functions.
(a) w = z1/n, n a positive integer (b) w = z2/3.

7. Prove the following identities:

(a) tan−1 z =
1
2i

log
(

1 + zi

1 − zi

)

(b) cot−1 z =
1
2i

log
(

z + i

z − i

)

(c) sec−1 z =
1
i

log
(

1 + (1 − z2)1/2

z

)

(d) csc−1 z =
1
i

log
(

i + (z2 − 1)1/2

z

)
.

8. Find all values of

(a) sin−1 1
2

(b) cos−1

√
2

2
(c) tan−1(1 + i) (d) sec−1 i.

9. Determine all values of the following:

(−1)
√

2, 21−i, (1 + i)
√

3, arg(1 − i), (−1)1/3

(cos i)i, (1 + i)1+i, (ii)i, isin i, (
√

3 + i)i/2.

10. Evaluate the limits

(i) lim
z→0

(1+z)1/z (ii) lim
z→2

√
z − 2

z − 2
(iii) lim

z→i
zArg (z).

11. Find all the points of discontinuity of

(i) f(z) = Log (z2 − 1) (ii) f(z) = Arg (z2)
(iii) f(z) = Log (z3 − 1) (iv) f(z) = Arg (z3)

(v) f(z) =
√

z2 + 1 (vi) f(z) =
√

z2 − 1.
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Analytic Functions

In this chapter, we will define differentiation for single-valued functions of a
complex variable, and we will see how the derivative of a complex variable
sometimes behaves like the derivative of a real function of one real variable,
and other times it is comparable to the partial derivatives of a real function
of two real variables. We also learn to appreciate the importance of neighbor-
hoods. If we do not require differentiability in a neighborhood, the smoothness
of a function along one path may obscure potential difficulties along some
other route.

5.1 Cauchy–Riemann Equation

As we have seen before, a function of a complex variable may be separated into
its real and imaginary parts. Writing f(z) = u(x, y) + iv(x, y) it is interesting
to compare properties of f(z) with those of its real-valued components u(x, y)
and v(x, y). In the case of continuity, the comparison is quite straight forward.

Let g be a function of the two real variables x and y. We say that

lim
(x,y)→(x0,y0)

g(x, y) = L

if for every ε > 0, there exists a δ > 0 such that

|g(x, y) − L| < ε whenever 0 <
√

(x − x0)2 + (y − y0)2 < δ.

If L = g(x0, y0), then g(x, y) is said to be continuous at (x0, y0).

Theorem 5.1. The function f(z) = u(x, y)+ iv(x, y) is continuous at a point
z0 = x0 + iy0 if and only if u(x, y) and v(x, y) are both continuous at the point
(x0, y0).

Proof. We first suppose f(z) to be continuous at z = z0. Then for any ε > 0,
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|u(x, y) − u(x0, y0)| ≤ |f(z) − f(z0)| < ε,

|v(x, y) − v(x0, y0)| ≤ |f(z) − f(z0)| < ε,

whenever
|z − z0| =

√
(x − x0)2 + (y − y0)2 < δ.

Thus both u(x, y) and v(x, y) are continuous at (x0, y0). Conversely, if u(x, y)
and v(x, y) are continuous at (x0, y0), the continuity of f(z) follows from the
inequality (recall that |z| ≤ |x| + |y| for z ∈ C)

|f(z) − f(z0)| ≤ |u(x, y) − u(x0, y0)| + |v(x, y) − v(x0, y0)|.

In view of Theorem 5.1, it is worthwhile to examine more carefully the
notion of the limit of a function of real two variables. Recall that for a function
of one real variable, when there are only two directions to travel, a limit exists
and only if the right- and left-hand limits coincide. There is no analog for a
function of two variables, since infinitely many modes of approach are possible.

Example 5.2. Let f(x, y) = xy/(x2 + y2), (x, y) �= (0, 0). Since f(x, y) ≡ 0
as (x, y) → (0, 0) along either of the coordinate axes, we have

lim
y→0

f(0, y) = lim
x→0

f(x, 0) = 0.

However, choosing the straight-line path y = mx, we obtain

lim
x→0

f(x, mx) = lim
x→0

mx2

x2 + mx2
=

m

1 + m2
.

Because f(x, y) approaches different values along different straight lines, the
limit at the origin does not exist. •
Example 5.3. Let f(x, y) = x2y2/(x + y2)3, (x, y) �= (0, 0). Here,

lim
x→0

f(x, mx) = lim
x→0

m2x4

(x + m2x2)3
= lim

x→0

m2x

(1 + m2x)3
= 0,

and f(x, y) approaches 0as (x, y) → (0, 0) along any straight line. But along
the parabola x = my2 (m �= 0),

lim
y→0

f(my2, y) = lim
y→0

m2y4y2

(my2 + y2)3
=

m2

(m2 + 1)3
.

Hence, lim(x,y)→(0,0) f(x, y) does not exist. •
Example 5.4. Let f(x, y) = (x3 − 2y3)/(x2 + y2), (x, y) �= (0, 0). We wish
to show that this function does have a limit at origin. Obviously, we can
not try all modes of approach; so it will be necessary to obtain appropriate
inequalities. We have
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|x3 − 2y3| ≤ |x|3 + 2|y|3 = |x|x2 + 2|y|y2

≤
√

x2 + y2(x2 + 2y2) ≤ 2(x2 + y2)3/2.

Thus, |f(x, y)| ≤ 2
√

x2 + y2, so that

|f(x, y)| < ε whenever
√

x2 + y2 < ε/2 = δ.

Therefore,

lim
(x,y)→(0,0)

f(x, y) = 0. •
Our purpose in the above examples was not to develop sophisticated meth-

ods for evaluating limits, but to emphasize the importance of the path. A
function may be very well-behaved along one route, while impossible to deal
with along another. This phenomenon will produce some surprising results
within the theory of differentiable functions.

A function f is said to be differentiable at a point z if

lim
h→0

f(z + h) − f(z)
h

exists. We then write

f ′(z) = lim
h→0

f(z + h) − f(z)
h

.

Note that h approaches 0 through points in the plane, not just along the
real axis or along the line y = mx. For example, the function f(z) = z2 is
everywhere differentiable because

lim
h→0

f(z + h) − f(z)
h

= lim
h→0

(z + h)2 − z2

h
= lim

h→0

2zh + h2

h
= 2z.

More generally, if f(z) = zn, n an integer, then f ′(z) = nzn−1. From the
identity

f(z + h) − f(z) =
(

f(z + h) − f(z)
h

)
h (h �= 0),

we let h → 0 to obtain the familiar real-variable theorem that a differentiable
function is continuous. That is,

lim
h→0

(f(z + h) − f(z)) = lim
h→0

(
f(z + h) − f(z)

h

)
h = f ′(z) · 0 = 0.

Therefore, limh→0 f(z + h) = f(z) and so we have

Theorem 5.5. If f is differentiable at a point z ∈ C, then f is continuous
at z.
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On the other hand, f(z) = |z| =
√

x2 + y2 is continuous on C but not
differentiable at the origin. Clearly, limz→0 f(z) = f(0) = 0 and

f(h) − f(0)
h − 0

=
|h|
h

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for positive real values of h
−1 for negative real values of h
−i for values of h on the positive

imaginary axis
i for values of h on the negative

imaginary axis.

Hence, f ′(0) does not exist. This example shows that continuity at a point is
not sufficient for a function f to be differentiable at that point. Also it follows
that each of the functions z, Re z and Im z is continuous on C but nowhere
differentiable.

Note the similarity thus far between the derivative of the complex-valued
function f(z) and the real-valued function f(x). In fact, all the formal differ-
entiation rules are the same. We collect the following properties as

Theorem 5.6. For f(z) and g(z) differentiable,

(i) (f(z) + g(z))′ = f ′(z) + g′(z),
(ii) (f(z)g(z))′ = f ′(z)g(z) + f(z)g′(z),

(iii)
(

f(z)
g(z)

)′
=

f ′(z)g(z) − g′(z)f(z)
(g(z))2

when g(z) �= 0.

Suppose g is differentiable at z, and f is differentiable at g(z). If F (z) =
f(g(z)), then

(iv) F ′(z) = f ′(g(z))g′(z).

Proof. These properties are proved, word for word, as they are for a function
of a real variable.

The function f(z) = |z|2 is differentiable only at the origin. In contrast,
g(x) = |x|2 (x ∈ R) is differentiable everywhere in R. Similarly, the function
φ(x) = x is differentiable on R, but the function ψ(z) = x = Re z (z ∈ C) is
nowhere differentiable.

Lest the reader be fooled by the apparent similarity between real and
complex derivatives, we now discuss some of the far-reaching consequences
of requiring (f(z + h) − f(z))/h to approach the same value regardless of
the path of h. To this end, properties of the real and imaginary parts of the
differentiable function f(z) = u(x, y)+iv(x, y) will be deduced by specializing
the mode of approach.

Suppose first that h approaches 0 along the real axis. Separating into real
and imaginary parts,

f(z + h) − f(z)
h

=
u(x + h, y) + iv(x + h, y) − u(x, y) − iv(x, y)

h

=
u(x + h, y) − u(x, y)

h
+ i

v(x + h, y) − v(x, y)
h

.
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If f is differentiable at z = x + iy, the limits of both expressions on the right
must exist, and we recognize them to be the partial derivatives of u(x, y) and
v(x, y) with respect to x. Hence

f ′(z) = lim
h→0

f(z + h) − f(z)
h

=
∂u

∂x
+ i

∂v

∂x
:=

∂f

∂x
. (5.1)

Next let h approach 0 along the imaginary axis. Then for h = ik, k real, we
have

f(z + ik) − f(z)
ik

=
u(x, y + k) − u(x, y)

ik
+ i

v(x, y + k) − v(x, y)
ik

.

Thus

f ′(z) = lim
k→0

f(z + ik) − f(z)
ik

=
1
i

∂u

∂y
+

∂v

∂y
=

∂v

∂y
− i

∂u

∂y
= −i

∂f

∂y
. (5.2)

But the expressions in (5.1) and (5.2) must be equal. So

f ′(z) = ux + ivx = vy − iuy. (5.3)

Equating real and imaginary parts in (5.3), we obtain

ux = vy, vx = −uy; or fx = −ify. (5.4)

The two equations in (5.4), known as the Cauchy–Riemann equations, furnish
us with a necessary condition for differentiability at a point.

Theorem 5.7. If f = u + iv is differentiable at z, then fx, fy exist at z and
satisfy the Cauchy–Riemann equations at z:

fy(z) = ifx(z);

or equivalently, ux = vy and uy = −vx.

For the function f(z) = z = x − iy, we have ux ≡ 1 and vy ≡ −1. Since
the Cauchy–Riemann equations are never satisfied, the function is nowhere
differentiable.

To see that the Cauchy–Riemann equations are not a sufficient condition
for differentiability at a point, consider

f(x + iy) = u + iv =

⎧⎨
⎩

x3 − y3

x2 + y2
+ i

(
x3 + y3

x2 + y2

)
if (x, y) �= (0, 0),

0 if x = y = 0.

For this function the corresponding u and v are continuous at the origin and
the partial derivatives of u and v all exist at the origin, because

ux(0, 0) = lim
h→0

u(h, 0) − u(0, 0)
h

= lim
h→0

h3/h2 − 0
h

= 1,
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uy(0, 0) = lim
h→0

u(0, h) − u(0, 0)
h

= lim
h→0

(−h3/h2)
h

= −1

and similarly vx(0, 0) = 1 = vy(0, 0). Thus we see that the Cauchy–Riemann
equations are certainly satisfied at the origin. But f is not differentiable at
the origin, because for h = h1 + ih1, h1 ∈ R,

f(0 + h) − f(0)
h

=
ih1

h1 + ih1
=

i

1 + i
=

1 + i

2

and for h = h1 + i0,

f(0 + h) − f(0)
h

=
h1 + ih1

h1
= 1 + i.

Therefore

lim
h→0

f(0 + h) − f(0)
h

does not exist. This shows that the partial derivatives exist and satisfy the
Cauchy–Riemann equations at the origin even though the function is not
differentiable there.

A similar conclusion continues to hold for the following function:

f(z) =

{ xy

x2 + y2
if z �= 0,

0 if z = 0.

This function vanishes on both coordinate axes. Hence at z = 0,

ux = uy = vx = vy = 0,

and the Cauchy–Riemann equations are satisfied. But on the line y = mx
(m �= 0), we have

f(h + imh) − f(0)
h + imh

=
h · mh/(h2 + m2h2)

h + imh
=

m

(1 + m2)(1 + im)h
,

which approaches ∞ as h approaches 0. Therefore, f ′(0) does not exist. In fact,
despite the existence of partial derivatives the function is not even continuous
at z = 0.

However, even if a function is continuous and has partial derivatives that
satisfy the Cauchy–Riemann equations at a point, we still are not guaranteed
differentiability. Consider the function

f(z) =

⎧⎨
⎩

xy2

x2 + y2
if z �= 0,

0 if z = 0.

Since |f(z)| ≤ |x|, the function is continuous at the origin. Moreover, as f = 0
on both the axes, fx = fy = 0 at the origin, so that the Cauchy–Riemann
equations are satisfied at the origin. But on the line y = mx (m �= 0),
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f(h + imh) − f(0)
h + imh

=
m2h3/(1 + m2)h2

h + imh
=

m2

(1 + im)(1 + m2)
,

which does not tend to a unique limit independent of m. Hence, once again,
f ′(0) does not exist, meaning that f is not differentiable at the origin. It
follows that the converse of Theorem 5.7 is not true.

Thus far, the negative character of the Cauchy–Riemann equations has
been emphasized. They have been utilized primarily to prove the nonexis-
tence of a derivative. In the next section, we will use these equations in con-
junction with an additional criterion to formulate a sufficient condition for
differentiability.

As indicated earlier, (5.3) can be expressed more concisely as

f ′(z) = fx = −ify. (5.5)

Equation (5.5) provides a method for calculating the derivative if the deriva-
tive is known to exist. Note that z = x + iy gives that

x =
z + z

2
, y =

z − z

2i
.

In view of this note, we may treat f(x + iy) as a function of z and z, and so

f(z) = u

(
z + z

2
,
z − z

2i

)
+ iv

(
z + z

2
,
z − z

2i

)
.

Thus

fz =
∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z

=
1
2

[
∂f

∂x
+ i

∂f

∂y

]

=
1
2

[(ux − vy) + i(vx + uy)]

and the equation fz = 0 is equivalent to the system

fx = −ify, or ux = vy and uy = −vx.

Thus, we have

Theorem 5.8. A necessary condition for a function f to be differentiable at
a point a is that it satisfies the equation fz = 0 at a.

The differential equation fz = 0 is known as the homogeneous Cauchy–
Riemann equation or simply the complex form of Cauchy–Riemann equations.
For instance if f(z) = z then fz = 1 �= 0, and so it is nowhere differentiable.
Similarly, using this we conclude that
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f1(z) = Re z =
z + z

2
, f2(z) = Im z =

z − z

2i
and f3(z) = ez

are all nowhere differentiable functions. We now prove an analog of a well-
known real-variable theorem.

Theorem 5.9. If f ′(z) ≡ 0 in a domain D, then f(z) is constant in D.

Proof. In view of (5.5), fx = fy = 0 for all points in D. Now if the derivative
of a function of one real variable vanishes in an interval, the function must
be constant in that interval. Hence, ux = uy = 0 in D implies that u(x, y)
is constant along every horizontal and vertical line segment in D. Similarly,
vx = vy = 0 in D implies that v(x, y) is constant along every horizontal and
vertical line segment in D. Thus, f(z) = u(z) + iv(z) is constant along every
polygonal line in D whose sides are parallel to the coordinate axes. According
to Remark 2.7, any two points in D can be joined by such a line. Therefore,
f(z1) = f(z2) for any pair of points z1, z2 ∈ D, so that f(z) must be constant
in D.

Theorem 5.9 is not true if D in this statement is an open set which is not
connected. For example, if D = {z : |z| > 2} ∪ {z : |z| < 1} and

f(z) =
{

2 if |z| < 1
3 if |z| > 3,

then f ′(z) = 0 on D but f is not constant on D.

Theorem 5.10. If f(z) is real-valued and differentiable on a domain D, then
f is constant on D.

Proof. Suppose that f is differentiable at z0. Then

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)
h

.

Allowing h → 0 along both the real and imaginary axes, we see that f ′(z0) is
both real and pure imaginary. Consequently, f ′(z0) = 0. By Theorem 5.9, f
is a constant.

An immediate consequence of Theorem 5.9 is the following result.

Corollary 5.11. If f = u + iv is differentiable in a domain D with either
u(x, y), v(x, y), or arg f(z) constant in D, then f(z) is constant in D.

Proof. Suppose that u(x, y) = c on D. Then ux = uy = 0 on D, and by the
Cauchy–Riemann equations, vy = vx = 0. Therefore, v is constant on D. The
other cases can be handled by a similar argument.

Corollary 5.12. If f and g are two differentiable functions in a domain D,
and Re f(z) = Re g(z) on D, then f(z) = g(z) + constant.
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This corollary says that “the real part Re f(z), completely determines the
differentiable function f(z) in a domain except for an additive constant”. Sim-
ilarly, every differentiable function f in a domain D is completely determined
by its imaginary part except for an additive real constant.

Questions 5.13.

1. What is the geometric interpretation of a continuous function of two
variables?

2. For a function of two variables, why is it usually easier to show that a
limit does not exist?

3. Why did the behavior of functions along the coordinate axes play a
central role?

4. Is there a function f having every directional derivative at a point with-
out f being continuous at that point?

5. Can the Cauchy–Riemann equations be written in polar coordinate
form?

6. Can we give a geometric interpretation to the existence of a derivative
of a complex function?

7. If a derivative exists, is the derivative a continuous function?
8. When will it be easier to evaluate limits by use of polar coordinates?
9. In this section, we used the word “path” without defining it. How would

you define “path”?
10. If a function f = u + iv is differentiable, can we say anything about

uxx?
11. If f(z) assumes only real values in a domain, what can we say about

the existence of f ′(z)?
12. Where is |z| differentiable? Where is |z|2 differentiable?
13. Where is z|z| differentiable? Where is z|z| continuous?
14. Where is Re z differentiable? Where is (Re z)2 differentiable?
15. Where is zRe z differentiable? Where is zRe z continuous?

Exercises 5.14.

1. If f(0, 0) = 0, which of the following functions are continuous at the
origin?

(a) f(x, y) =
x2y2

x4 + y4

(c) f(x, y) =
x3y2

(x2 + y2)2

(e) f(x, y) =
(x + y2)2

x2 + y2

(b) f(x, y) =
x2y2

(x2 + y2)2

(d) f(x, y) =
x + ye−x2

1 + y2

(f) f(x, y) =
x
√

|xy|
x2 + y2

.

2. Determine where the following functions satisfy the Cauchy–Riemann
equations, and where the functions are differentiable.
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(a) f(z) = z2 (b) f(z) = x2 − y2

(c) f(z) = 2xyi (d) f(z) = x2 − y2 + 2xyi
(e) f(z) = zRe z (f) f(z) = z|z|
(g) f(z) = |Re z Im z|1/2 (h) f(z) = |Re z Im z|1/3

(i) f(z) = zIm z (j) f(z) = 2z + 4z + 5.
3. Show that at z = 0 the function f defined by

f(x + iy) =

⎧⎨
⎩

(1 + i)x3 − (1 − i)y3

x2 + y2
for x + iy �= 0

0 for x = y = 0

satisfies the Cauchy–Riemann equations but it is not differentiable.
4. If f(z) is continuous at a point z0, show that f(z) is also continuous at

z0. Is the same true for differentiability at z0? What does the function
f(z) = |z|2 show? How about f(z) = z?

5. If f(z) is continuous at a point z0, then show that f(z) is also continuous
at z0. Is the same is true for the differentiability at z0?

6. Is f : C → C given by f(z) = z2 + z|z|2 differentiable at z = 0? If so,
what is f ′(0)? Does f (n)(0) exist for n ≥ 2? Give your reasons.

7. a) Give an integer n and nonzero real number m, construct a function
f(z) such that limz→0 f(z) = 0 along each curve of the form y =
mxk (k = 0, 1, 2, . . . , n−1), but for which limz→0 f(z) �= 0 along
the curve y = mxn.

b) Construct a function f(z) for which limz→0 f(z) = 0 along each
curve of the form y = mxn (n = 1, 2, 3, . . . ), but for which
limz→0 f(z) does not exist.

8. If f(z) is differentiable at z, show that

|f ′(z)|2 =
(

∂u

∂x

)2

+
(

∂v

∂x

)2

=
(

∂u

∂y

)2

+
(

∂v

∂y

)2

=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
=

∣∣∣∣ux uy

vx vy

∣∣∣∣ =
∂(u, v)
∂(x, y)

.

The last expression is the Jacobian of u and v with respect to the vari-
ables x and y.

9. If fx and fy exist at a point (x0, y0), show that

lim
x→x0

f(x, y0) = lim
y→y0

f(x0, y) = f(x0, y0).

Must f(x, y) be continuous at (x0, y0)?

5.2 Analyticity

Try as we did, we were unable to extract differentiability from the Cauchy–
Riemann equations. This “smoothness” requirement along the coordinate axes
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could not sufficiently control the behavior of a function along different paths.
If we focus on neighborhoods rather than on isolated points, many of our
difficulties will be eliminated.

A function is said to be analytic at a point if it is differentiable everywhere
in some neighborhood of the point. A function is analytic in a domain if it is
analytic at every point in the domain. A function analytic at every point in
the complex plane is called an entire function.

The function
f(z) = |z|2 = x2 + y2

is differentiable only at the origin, and hence is not analytic anywhere. The
function f(z) = x2y2 is differentiable at all points on each of the coordinate
axes, but is still nowhere analytic. On the other hand, all the polynomials are
entire functions, and f(z) = z/(1− z) is analytic everywhere except at z = 1.

Remark 5.15. If f(z) is analytic at z0, then there exist an ε > 0 such that
f(z) is differentiable at each point in N(z0; ε). But for any point z1 ∈ N(z0; ε),
we can find a δ > 0 such that N(z1; δ) ⊂ N(z0; ε). Hence f(z) is also analytic
at z1. Consequently, f(z) is analytic at a point if and only if f(z) is analytic
in some neighborhood of the point. Thus, the set of all values for which a
given function is analytic must form an open set. In particular, if a function is
analytic in a closed set, then there is always an open set containing the closed
set in which the function is analytic. •

Returning to functions of two variables, we prove the following mean-value
theorem:

Theorem 5.16. Let f(x, y) be defined in a domain D, with fx and fy con-
tinuous at all points in D. Given a point (x, y) ∈ D, choose δ so that
(x + h, y + k) ∈ D for all points satisfying

√
h2 + k2 < δ. Then

f(x + h, y + k) − f(x, y) = fx(x, y)h + fy(x, y)k + ε1h + ε2k,

where ε1 → 0 and ε2 → 0 as h → 0 and k → 0.

Proof. We write

f(x + h, y + k) − f(x, y) (5.6)
= {f(x + h, y + k) − f(x, y + k)} + {f(x, y + k) − f(x, y)}.

Now f(ξ, y + k) may be viewed as a differentiable function of the one real
variable ξ, where ξ assumes values between x and (x + h). Applying the
mean-value theorem for one real variable, we have

f(x + h, y + k) − f(x, y + k) = fx(x + θ1h, y + k)h (|θ1| < 1). (5.7)

Similarly,
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f(x, y + k) − f(x, y) = fy(x, y + θ2k)k (|θ2| < 1). (5.8)

By the continuity of fx and fy,

fx(x + θ1h, y + k) = fx(x, y) + ε1 and fy(x, y + θ2k) = fy(x, y) + ε2,

where ε1 → 0 and ε2 → 0 as h → 0 and k → 0. In view of the last equation,
we may rewrite (5.7) and (5.8) as

f(x + h, y + k) − f(x, y + k) = fx(x, y)h + ε1h

f(x, y + k) − f(x, y) = fy(x, y)k + ε2k.

The result now follows from (5.6).

This mean-value theorem enables us to utilize the Cauchy–Riemann equa-
tions to establish sufficient conditions for analyticity.

Theorem 5.17. Let f(z) = u(x, y) + iv(x, y) be defined in a domain D,
and let u(x, y) and v(x, y) have continuous partials that satisfy the Cauchy–
Riemann equations

ux = vy, vx = −uy

for all points in D. Then f(z) is analytic in D.

Proof. Set Δz = h + ik, where h and k are arbitrary real numbers. Given a
point z ∈ D, we must show that

lim
Δz→0

f(z + Δz) − f(z)
Δz

exists. For h and k sufficiently small, z+Δz is in D. Since u and v are assumed
to have continuous partials, an application of Theorem 5.1 shows that fx and
fy must also be continuous. Thus the conditions of Theorem 5.16 are satisfied
and we have

f(z + (h + ik)) − f(z)
h + ik

=
fx(x, y)h + fy(x, y)k + ε1h + ε2k

h + ik
, (5.9)

where ε1 → 0 and ε2 → 0 as h → 0 and k → 0. As we saw in (5.5), the
Cauchy–Riemann equations may be expressed as fx(x, y) = −ify(x, y), or

ifx(x, y) = fy(x, y). (5.10)

Substituting (5.10) into (5.9), we obtain

f(z + (h + ik)) − f(z)
h + ik

=
fx(x, y)h + ify(x, y)k + ε1h + ε2k

h + ik
(5.11)

= fx(x, y) + ε1
h

h + ik
+ ε2

k

h + ik
.
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But ∣∣∣∣ h

h + ik

∣∣∣∣ ≤ 1,

∣∣∣∣ k

h + ik

∣∣∣∣ ≤ 1,

so that the last two expressions in (5.11) approach zero as h and k approach
zero. Therefore,

lim
h→0, k→0

f(z + (h + ik)) − f(z)
h + ik

= fx(x, y).

Because no assumptions were made about the manner in which h and k ap-
proached zero, the derivative f ′(z) exists, with f ′(z) = fx(x, y). Since z was
arbitrary, the function is differentiable everywhere in D, and hence is analytic
in D.

Observe that we could similarly have shown that f ′(z) = −ify(x, y) for all
points in D.

It pays, at this point, to extract the important steps of Theorem 5.17 in
order to understand more fully the relationship between the Cauchy–Riemann
equations and differentiability. Requiring continuity of the partials in a neigh-
borhood allowed us to apply Theorem 5.16 to obtain (5.9). A substitution
of the Cauchy–Riemann equations into (5.9) led to (5.11). Analyticity then
followed from (5.11).

Had differentiability at a point been our main objective, we would have
proved a theorem analogous to Theorem 5.17 that required continuity of the
partials at only one point. For complex functions, however, analyticity (rather
than differentiability at a point) is the important concept.

Example 5.18. Consider f(z) = u+iv, where u = x2 and v = y2. Each of the
partial derivatives is continuous in C, whereas u and v satisfy the Cauchy–
Riemann equations only when y = x. Thus f is differentiable at (1 + i)x,
x ∈ R, and nowhere else. •
Example 5.19. If u(x, y) = x2 + y2 and v(x, y) = xy then all the partial
derivatives exist and are continuous in C. However f = u+ iv is differentiable
only at z = 0 because the Cauchy–Riemann equations are satisfied only at the
origin; so f is nowhere analytic since f is differentiable at z = 0 and nowhere
else. •

In Chapter 8, we will show that if f(z) is analytic at a point, then f(z)
has derivatives of all orders at the point. In particular, the existence of f ′(z)
tells us that

f ′(z) =
∂f

∂x
= −i

∂f

∂y

is continuous. In view of Theorem 5.1, the partial derivatives of its real and
imaginary components are also continuous.

Therefore, the converse of Theorem 5.17 is also true. That is, a function
is analytic in a domain D if and only if the function has continuous partials
that satisfy the Cauchy–Riemann equations for all points in D.
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Remark 5.20. In real analysis, if f(x) is differentiable on (a, b), then the
derivative f ′(x) need not be differentiable on (a, b) (need not even be contin-
uous as shown by an example below). Clearly, the function

f(x) =
3
4
x4/3

is differentiable on (−1, 1), whereas f ′(x) = x1/3 is not differentiable at the
origin. •

Note that differentiability in a neighborhood does not assume the same
importance for real as for complex functions. The real-valued function

f(x) = x|x|

is differentiable for all real values, but does not have a second derivative at
the origin. The everywhere-differentiable function in R

f(x) =

{
x2 sin

1
x

if x �= 0

0 if x = 0

does not even have a continuous derivative at the origin.
It is now quite simple to establish analyticity for the elementary functions.

Examples 5.21. Let f(z) = ez = ex(cos y + i sin y). We have

ux = vy = ex cos y and vx = −uy = ex sin y.

Theorem 5.17 may be applied to deduce that f(z) = ez is an entire function
and that

f ′(z) =
∂f

∂x
= ex cos y + iex sin y = ez.

Similarly, if f(z) = sin z = (eiz − e−iz)/2i, then by Theorem 5.6 and Example
5.21,

f ′(z) =
ieiz + ie−iz

2i
=

eiz + e−iz

2
= cos z.

Also, if f(z) = cos z = (eiz + eiz)/2, then

f ′(z) =
ieiz − ie−iz

2
=

−eiz + e−iz

2i
= − sin z. •

The above examples illustrate a recurrent pattern in the theory of complex
variables. The real-valued exponential furnishes us with information about
the complex exponential, which then enables us to derive results about the
complex trigonometric functions. We leave it for the reader to verify that
tan z, cot z, sec z and csc z have the “expected” derivatives.

For certain functions, it is easier to express real and imaginary parts in
terms of r and θ of z = reiθ,
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f(z) = u(r, θ) + iv(r, θ).

For example, if f(z) = z5, then expressing this in terms of x and y is uninvit-
ing. On the other hand, De Moivre’s theorem quickly gives

f(z) = (reiθ)5 = r5 cos 5θ + ir5 sin 5θ.

A sometimes useful expression for the Cauchy–Riemann equations in polar
coordinates will now be proved.

Theorem 5.22. Let f = u + iv be differentiable with continuous partials at a
point z = reiθ, r �= 0. Then

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

In most textbooks, the polar form of the two Cauchy–Riemann equations
is either left as an exercise or worked out by using the chain rule for functions
of two variables to write ux, uy, vx and vy in terms of r and θ and then
solving/comparing the equations which involve these partial derivatives. Let
us provide a simpler proof of Theorem 5.22.

Proof. Recall that f ′(z) = fx = −ify. We have for z = reiθ �= 0,

fr =
∂f

∂z

∂z

∂r
= f ′(reiθ)eiθ and fθ = f ′(reiθ)ireiθ, (5.12)

or equivalently,

fr = eiθf ′(reiθ) and fθ = ireiθf ′(reiθ) (5.13)

which shows that

fr = − i

r
fθ, i.e. ur + ivr = − i

r
(uθ + ivθ) (r �= 0).

Taking the real and imaginary parts of this equation yields the desired
Cauchy–Riemann equations in polar form.

To demonstrate that the polar form is useful, we consider f : C \ {0} → C

given by
f(z) = Log z := ln |z| + iArg z.

If z = reiθ �= 0, then this equation becomes

f(z) = ln r + iθ := u(r, θ) + iv(r, θ) (−π < θ ≤ π)

and it is now easier to check the polar form of the Cauchy–Riemann equations.
As (see (5.13))



136 5 Analytic Functions

f ′(z) = e−iθfr = − i

r
e−iθfθ, (5.14)

it follows that

d

dz
( Log z) =

e−iθ

r
=

1
z
, z ∈ C \ {x + iy : x ≤ 0, y = 0}.

Note that v is not continuous at points on the negative real axis, and the
partial derivatives are continuous at all points except those points on the
negative real axis.

For another illustration, consider

f(z) = u(x, y) + iv(x, y) :=
y2 − x2

(x2 + y2)2
+ i

(
2xy

(x2 + y2)2

)
.

It is not easy to use the Cartesian form to verify the analyticity of this function.
In terms of polar coordinates, we write x = r cos θ and y = r sin θ so that

f(z) = −cos 2θ

r2
+ i

sin 2θ
r2

= −e−2iθ

r2
(r �= 0).

Thus,

fr =
2
r3

e−2iθ and fθ =
2i

r2
e−2iθ

which gives, according to the formula (5.14),

f ′(z) = e−iθfr =
2

r3e3iθ
=

2
z3

, z �= 0.

Example 5.23. We wish to obtain a branch of (z2−1)1/2 that is analytic for
|z| > 1.

To do this we need to identify a solution w = f(z) that is analytic for
|z| > 1 and satisfies the condition

w2 = z2 − 1. (5.15)

If we use the principal branch of (z2 − 1)1/2, then

w = e(1/2) Log (z2−1).

Does this function do the job? Note that this function is analytic on the open
set Ω = {z : z2 − 1 ∈ C \(−∞, 0]}. Note that a point z fails to belong to Ω iff

z2 − 1 ∈ (−∞, 0].

To exhibit Ω we just need to remove from C those complex numbers z for
which

Re (z2 − 1) = x2 − y2 − 1 ≤ 0 and 2xy = 0.
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This gives the set

{x + iy : x = 0} ∪ {x + iy : y = 0, |x| ≤ 1}.

Thus, the branch cut for the principal branch of (z2−1)1/2 is the whole y-axis
as well as the real interval [−1, 1] of R. So we need to look for an alternate
solution w satisfying (5.15). In view of this, we rewrite (5.15) as

w2 = z2

(
1 − 1

z2

)

and consider

w = g1(z) = z(1 − 1/z2)1/2 = ze(1/2) Log (1−1/z2)

or
w = g2(z) = −ze(1/2) Log (1−1/z2),

each of which is a solution of (5.15). As Log (1−z) is analytic for z ∈ C \[1,∞),
Log (1 − 1/z) is, in particular, analytic for |z| > 1. Consequently, g1 and g2

are analytic for |z| > 1. What are their derivatives for |z| > 1?
Finally, to obtain the branch of (z2−1)−1/2 which are analytic for |z| < 1,

we rewrite (5.15) as

w2 = −(1 − z2) = i2(1 − z2).

This allows us to consider two solutions of (5.15) which are analytic for |z| < 1,
namely,

w = φ1(z) = ie(1/2) Log (1−z2) or w = φ2(z) = −ie(1/2) Log (1−z2). •
Example 5.24. We wish to determine the largest open set Ω in which the
function Log (1 − zn) (n ∈ N) is analytic.

To do this, we first recall that g(z) = Log z is analytic in C \ (−∞, 0] but
not in any larger open set. Also, g′(z) = 1/z. Set h(z) = 1 − zn. Then g is
analytic in C minus those points z for which

1 − zn ∈ (−∞, 0], i.e., zn ∈ [1,∞).

For instance, if n = 2, then

1 − z2 ∈ (−∞, 0] ⇐⇒ z ∈ (−∞,−1] ∪ [1,∞)

and
1 − z3 ∈ (−∞, 0] ⇐⇒ z ∈ R0 ∪ R1 ∪ R2,

where Rk = {rei2kπ/3 : r ≥ 1} (k = 0, 1, 2) is the ray starting from ei2kπ/3 (a
cube root of unity) to ∞. Thus, the largest open set in which Log (1− zn) is
analytic is therefore the set

Ω = C \ ∪n−1
k=0Sk

where Sk = {rei2kπ/n : r ≥ 1}, k = 0, 1, 2, . . . , n − 1. •
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Example 5.25. Let f be an entire function. Suppose that f = u+ iv has the
property that

uy − vx = −2 for all z ∈ C.

What can we say about the function f? Can it be a constant function? Clearly
not! Can this be a polynomial of degree > 1? The given condition shows that
this is not the case (how?). Let us try to find this function. By the Cauchy–
Riemann equation uy = −vx, the given condition is the same as

vx = 1

which, by the fact that f ′(z) = ux + ivx, is equivalent to

Im f ′(z) = 1.

This observation implies that f ′(z) is a constant, say a, so that f has the form

f(z) = az + b

with Im a = 1 (Alternatively, as Im f ′(z) = 1, h(z) is defined by

h(z) = eif ′(z)

is entire and |h(z)| = e−1 which is a constant. Thus, h and hence, f ′(z) is a
constant). •

We close this section with a theorem requiring only differentiability at a
point, although a more general theorem for analytic functions will be proved
later.

Theorem 5.26. Let f(z) and g(z) be differentiable at z0, with f(z0) =
g(z0) = 0. If g′(z0) �= 0, then limz→z0(f(z)/g(z)) = f ′(z0)/g′(z0).

Proof. The result is a consequence of the definition of a derivative, for

f ′(z0)
g′(z0)

=
limz→z0

f(z) − f(z0)
z − z0

limz→z0

g(z) − g(z0)
z − z0

= lim
z→z0

f(z) − f(z0)
z − z0

g(z) − g(z0)
z − z0

= lim
z→z0

f(z)
g(z)

.

Examples 5.27. (i) Let f(z) = |z|2 and g(z) = z. Then

lim
z→0

f(z)
g(z)

=
f ′(0)
g′(0)

=
0
1

= 0.

Note that for z �= 0, f(z)/g(z) equals z.
(ii) For f(z) = sin z, we have

lim
z→0

f(az)
f(z)

= lim
z→0

sin az

sin z
= a

cos 0
cos 0

= a,

where a is any complex number.
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(iii) Let f(z) = 1− cos z and g(z) = sin2 z. Here g′(2nπ) = 0 for each n ∈ Z,
but Theorem 5.26 may be avoided by solving directly. Because

sin2 z = 1 − cos2 z = (1 − cos z)(1 + cos z),

we have for each n ∈ Z

lim
z→2nπ

1 − cos z

sin2 z
= lim

z→2nπ

1 − cos z

1 − cos2 z
= lim

z→2nπ

1
1 + cos z

=
1
2
. •

Questions 5.28.

1. If we do not require continuity of the partials in Theorem 5.16, what
kind of mean-value theorem can we obtain?

2. What important differences are there between differentiable functions
and analytic functions?

3. Let f be defined on a domain D ⊆ C and a, b ∈ D such that [a, b] ⊆ D.
Does there exists a point c on this line segment [a, b] such that

f(b) − f(a) = f ′(c)(b − a)?

4. What alternate definitions could we have given for an entire function?
5. What relationships are there between continuity of a function and the

continuity of its partials?
6. If f(z) and f(z) are both analytic in a domain D, what can be said

about f throughout D?
7. Let f(z) be analytic in the unit disk Δ = {z ∈ C : |z| < 1}. Is g(z) =

f(z) analytic in Δ?
8. Is f(z) = (z)3 − 3z differentiable at ±1? Is f(z) analytic?
9. Does there exist a function f that is analytic only for Imz ≥ 2004 and

nowhere else?
10. How might we define a real analytic function?
11. If f(z0) = g(z0) = 0, f ′(z0) and g′(z0) exist with g′(z0) �= 0, does

lim
z→z0

f(z)
g(z)

= lim
z→z0

f ′(z)
g′(z)

?

12. If a function is analytic in a bounded region, is the function bounded?
13. If f(z) satisfies the Cauchy–Riemann equations for all points in the

plane, is f(z) an entire function?
14. Why isn’t the polar form of the Cauchy–Riemann equations valid at the

origin?
15. Are the branch cuts of (z2 − 4)1/2 the whole of imaginary axis and the

interval [−2, 2] of the real axis? If so, what is the region of analyticity
of the chosen branch?

16. Is
√

z2 − 4 =
√

z + 2
√

z − 2? If so, when?
17. What is the branch cut for principal branch of (1 − z2)1/2?
18. Does iz + (1 − z2)1/2 take the value 0 at some point z ∈ C, regardless

of the choice of the square root?
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19. What is the derivative of (
√

z)3 at z = 1 − i?
20. Where is Arg z continuous? Where is (Arg z)2 continuous? Where is

(Arg z)3 continuous?
21. Does there exist a function f that is analytic for Re (z) ≥ 2006 and is

not analytic anywhere else?

Exercises 5.29.

1. Suppose that f(x) = x2 − y3 + i(x3 + y2). Does it satisfy the Cauchy–
Riemann equations for points on the line y = x? If so, can we say that
f is differentiable at these points? If so, can we say that f is analytic at
these points?

2. Place restrictions on the constants a, b, c so that the following functions
are entire:
(a) f(z) = x + ay − i(bx + cy)
(b) f(z) = ax2 − by2 + icxy
(c) f(z) = ex cos ay + iex sin(y + b) + c
(d) f(z) = a(x2 + y2) + ibxy + c.

3. Let

f(z) =
{

e−1/z4
if z �= 0

0 if z = 0.

Show that
(a) f(z) satisfies the Cauchy–Riemann equations everywhere
(b) f(z) is analytic everywhere except at z = 0
(c) f(z) is not continuous at z = 0.

4. Let f(z) and g(z) be entire functions. Show that the following functions
are also entire.

(a) f(z) + g(z) (b) f(z)g(z) (c) f(g(z)).

5. Let f(z) and g(z) be analytic at z0. Show that f(z)/g(z) is analytic at
z0 if and only if g(z0) �= 0.

6. Let f(z) = a0 + a1z + · · · + anzn. Prove that ak = (f (k)(0))/k! (k =
0, 1, . . . , n).

7. If f(z) is analytic at z0, show that g(z) = Re f(z) is analytic at z0 if
and only if g(z) is constant in some neighborhood of z0.

8. Using the Cauchy–Riemann equations, find the most general entire func-
tions such that Re f ′(z) = 0.

9. If f is entire such that f(z1 + z2) = f(z1) + f(z2) for all z1, z2 ∈ C,
then show that f(z) = f(1)z. Give an example of a continuous nowhere
differentiable function f satisfying the given condition for all z1, z2 ∈ C.
Find also all continuous functions satisfying this condition.

10. Find the most general entire functions of the form f(z) = u(x) + iv(y),
where u and v depend only one real variable.

11. If f = u + iv is differentiable at a point z, show that the first-order
partials of u and v exist at z.
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12. If f is analytic in a domain D, prove that

(a)
(

∂2

∂x2
+

∂2

∂y2

)
|f(z)|n = n2|f(z)|n−2|f ′(z)|2

(b)
(

∂2

∂x2
+

∂2

∂y2

)
|Re f(z)|n = n(n − 1)|Re f(z)|n−2|f ′(z)|2.

13. (a) Let f(z) be analytic with continuous partials in a domain D that
excludes the origin. Use Theorem 5.22 to show that

f ′(z) = e−iθ ∂f

∂r
= e−iθ(ur + ivr) =

1
iz

∂f

∂θ
=

e−iθ

r
(vθ − iuθ)

at all points in D.
(b) Conversely, if f(z) has continuous partials in a domain D that ex-

cludes the origin, and

e−iθ ∂f

∂r
=

1
iz

∂f

∂θ

at all points in D, show that f(z) is analytic in D.
14. Use the above exercise to determine whether the following functions are

analytic in the domain of definition. What is its derivative in terms of
z?

(a) r + iθ (b) θ + ir
(c) ln r + i(θ + 2π) (d) r10 cos(10θ)

(e) r10 sin(10θ) (f)
10r2 − sin(2θ)

r2
.

where 0 < r and −π < θ < π.
15. Use the result of the previous exercise to show that the derivative of zn,

n an integer, is nzn−1.
16. Evaluate the following limits, if they exist.

(a) lim
z→0

ez − 1
3z

(b) lim
z→0

z2

|z|
(c) lim

z→0

2 sin z

ez − 1
(d) lim

z→0
z sin

1
z
.

17. Construct a branch f(z) of log z such that f(z) is analytic at z = −1
and takes on the value 5πi there.

5.3 Harmonic Functions

If f(z) is analytic in a domain, then its derivative can be expressed in several
forms. For instance, according to (5.5) we may write

f ′(z) =
∂f

∂x
, or f ′(z) = −i

∂f

∂y
. (5.16)
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In Chapter 8 it will be shown that an analytic function has derivatives of
all orders. From the first equation in (5.16), we see that the second derivative
can be expressed as

f ′′(z) =
∂

∂x
f ′(z) =

∂2f

∂x2
. (5.17)

In view of the second equation in (5.16), we also have

f ′′(z) = −i
∂

∂y
f ′(z) = −i

∂

∂y

(
−i

∂f

∂y

)
= −∂2f

∂y2
. (5.18)

Equating (5.17) and (5.18), we get the identity

∂2f

∂x2
+

∂2f

∂y2
= 0, (5.19)

which is valid for any analytic function f(z). Thus if f(z) = u(x, y) + iv(x, y)
is analytic in a domain, equation (5.19) shows that its real and imaginary
components must satisfy the partial differential equations

∂2u

∂x2
+

∂2u

∂y2
= 0 and

∂2v

∂x2
+

∂2v

∂y2
= 0. (5.20)

A continuous real-valued function U(x, y), defined in a domain D, is said
to be harmonic in D if it has continuous first- and second-order partials that
satisfy the equation

Uxx + Uyy = 0, (5.21)

known as Laplace’s equation, throughout D. Thus, in the case of the func-
tions of two variables, the above discussion provides the intimate connection
between analytic functions and harmonic functions in the following form.

Theorem 5.30. If f = u + iv is analytic on a domain D, and the functions
u and v have continuous second order partial derivatives on D, then u and v
are harmonic on D.

Using the (as yet unproved) result that a function analytic in a domain has
derivatives of all orders at each point in the domain (hence a continuous second
derivative), we see from (5.20) the following result which is a reformulation of
Theorem 5.30.

Theorem 5.31. Both the real and imaginary parts of an analytic function
are harmonic.

Let us now obtain the polar form of Laplace’s equation. From (5.13), we
have
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frr =
∂

∂r
(eiθf ′(reiθ)) = eiθ[eiθf ′′(reiθ)] = e2iθf ′′(reiθ),

fθθ =
∂

∂θ
(ireiθf ′(reiθ))

= ireiθ ∂

∂θ
(f ′(reiθ)) + i2reiθf ′(reiθ)

= ireiθ[ireiθf ′′(reiθ)] − reiθf ′(reiθ)
= −r2e2iθf ′′(reiθ) − rfr

= −r2frr − rfr.

We thus obtain

∂2f

∂r2
+

1
r2

∂2f

∂θ2
+

1
r

∂f

∂r
= 0, i.e. r

∂

∂r

(
r
∂f

∂r

)
+

∂2f

∂θ2
= 0

which is the polar form for Laplace’s equation.
If u is harmonic on D such that f(z) = u(x, y) + iv(x, y) is analytic, then

v is called a harmonic conjugate of u.

Remark 5.32. We have the antisymmetric property that v is a harmonic
conjugate of u if and only if u is harmonic conjugate of −v. This follows upon
observing that the function if = i(u + iv) = −v + iu is analytic whenever f
is analytic. •

Although f(z) = x+iy is analytic so that v(x, y) = y is harmonic conjugate
of u(x, y) = x, g(z) = v+iu = i(x−iy) = iz is nowhere analytic. This example
is to illustrate the following: “If v is a harmonic conjugate of u in some domain
D, then u is not a harmonic conjugate of v unless u + iv is a constant”.

Laplace’s equation furnishes us with a necessary condition for a function
to be the real (or imaginary) part of an analytic function.

Example 5.33. For the function u(x, y) = x2 + y, we have

uxx + uyy ≡ 2,

so that u satisfies Laplace’s equation nowhere. Hence, u(x, y) = x2 +y cannot
be the real part of any analytic function. •

We will now show how the Cauchy–Riemann equations may be applied to
find a harmonic conjugate. For instance, the function u(x, y) = x + e−x cos y
can easily be shown to be harmonic everywhere. If there exists a function
v(x, y) for which f(z) = u(x, y) + iv(x, y) is analytic in C, then

ux = 1 − e−x cos y = vy. (5.22)

Antidifferentiation of (5.22) with respect to y yields

v = y − e−x sin y + φ(x), (5.23)



144 5 Analytic Functions

where φ(x) is a differentiable function of x. But in view of (5.23), an applica-
tion of the other Cauchy–Riemann equation leads to

uy = −e−x sin y = −vx = −e−x sin y − φ′(x),

which can be valid only if φ′(x) ≡ 0. Hence,

v(x, y) = y − e−x sin y + c,

where c is a real constant. Therefore, v(x, y) is a harmonic conjugate of u(x, y)
and, according to Theorem 5.17, f(z) is an entire function. In fact,

f(z) = x + e−x cos y + i(y − e−x sin y + c)
= x + iy + e−x(cos y − i sin y) + ic

= z + e−z + ic.

Example 5.34. Suppose we wish to find all analytic functions f(z) whose
real part is u(x, y) = ex(x cos y − y sin y). We may simply rewrite u as

u(x, y) = exRe ((x + iy)(cos y + i sin y)) = Re [(x + iy)exeiy] = Re [zez],

and so the desired analytic functions are of the form f(z) = zez + ic for some
c ∈ R.

Similarly, we may rewrite

e−x(x sin y − y cos y) = e−xRe [(x + iy)(sin y + i cos y)]
= Re [e−x(x + iy)i(cos y − i sin y)]
= Re [i(x + iy)e−(x+iy)]
= Re [ize−z].

Thus, every analytic function, whose real part is

u(x, y) = e−x(x sin y − y cos y),

must be of the form f(z) = ize−z + ic for some real constant c.
In this way one can write

ex[(x2 − y2) cos y − 2xy sin y] = exRe [(x2 − y2 + 2ixy)(cos y + i sin y)]
= Re [z2ex(cos y + i sin y)]
= Re [z2ez],

and conclude that every analytic function, whose real part is given by

u(x, y) = ex[(x2 − y2) cos y − 2xy sin y],

must be of the form z2ez + ic for some real c. •
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Example 5.35. Suppose that f(z) = u + iv is an analytic function in a
domain D such that u − v is given as

u − v = ex(cos y − sin y).

We wish to find f(z) in terms of z. The easy procedure is as follows. As
f = u + iv, we have if = −v + iu so that

Re [(1 + i)f ] = u − v

and therefore, we may write the given expression for u − v as

Re ((1 + i)f(z)) = ex(cos y − sin y)
= exRe [(1 + i)(cos y + i sin y)]
= Re [(1 + i)exeiy]
= Re [(1 + i)ez + ic] (c ∈ R)

which shows that
f(z) = ez + i(c/(1 + i))

for some real constant c. The same procedure may be adopted for problems
similar to this. •
Example 5.36. Let us determine the entire function f = u + iv for which
f(0) = i and u(x, y) = x4 +y4−6x2y2−4xy. To do this, it suffices to compute

ux = 4x3 − 12xy2 − 4y and uy = 4y3 − 12x2y − 4x.

Clearly, u is harmonic in C. Now, we have

f ′(z) = ux − iuy = 4x3 − 12xy2 − 4y + i(−4y3 + 12x2y + 4x) = 4z3 + 4iz

which gives
f(z) = z4 + 2iz2 + c.

Setting c = i, we get the desired function. •
Two questions now arise: To what extent is Laplace’s equation sufficient

to guarantee the existence of a harmonic conjugate, and how do we, in gen-
eral, determine all such conjugate functions? Both of these questions will be
answered in Chapter 10 when we construct a harmonic conjugate for any
function harmonic in some neighborhood of a point. Thus, a function will be
shown to be harmonic in a neighborhood of a point if and only if it is the real
part of some analytic function.

As might be expected, any two harmonic conjugates of a given harmonic
function differ by a real constant. For, if v(x, y) and v∗(x, y) are harmonic
conjugates of u(x, y), then both u + iv and u + iv∗ are analytic so that the
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difference i(v − v∗) is also analytic. Consequently, v − v∗ is a real-valued
analytic function. Thus,

v(x, y) = v∗(x, y) + C,

where C is a constant.
Many properties of analytic functions are inherited from their real or imag-

inary parts. For example, if u = Re f(z) is constant in a region where f(z) is
analytic, then f(z) must be constant. This follows on applying the Cauchy–
Riemann equations to obtain ux = uy = vx = vy = 0.

While the real and imaginary parts of an analytic function are harmonic,
its modulus need not be harmonic. However, properties of the analytic func-
tion may still be deduced by studying the behavior of its modulus.

Theorem 5.37. Let |f(z)| be constant in a domain D where f(z) is analytic.
Then f(z) is constant in D.

Proof. If |f(z)| = |u + iv| = C, then u2 + v2 = C2. Differentiating, we have

uux + vvx = 0, uuy + vvy = 0. (5.24)

An application of Cauchy–Riemann equations to (5.24) yields

uux − vuy = 0, uuy + vux = 0. (5.25)

Eliminating uy from (5.25), we get

(u2 + v2)ux = 0,

so that ux = 0. In a similar manner, we can show that uy = vx = vy = 0.
Thus, we observe that

0 = f ′(z) = ux + iuy

which gives that u and v are constants.

Theorem 5.37 is actually guided through the start of the proof of Theorem
5.9. Here is an alternate proof of Theorem 5.37: Suppose that |f(z)|2 = c for
all z ∈ D and for some constant c ∈ R. If c = 0, then |f(z)|2 = 0 implies that
f vanishes on D. If c �= 0, then f(z) �= 0 on D and 1/f(z) is analytic on D.
But then

c = |f(z)|2 = f(z)f(z)

shows that f(z) = c/f(z) is analytic on D. Consequently, the real-valued
function (see Theorem 5.10)

Re f(z) =
f(z) + f(z)

2

is analytic on D and so it is constant. Similarly,
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Im f(z) =
f(z) − f(z)

2i

is a real-valued analytic function on D and so it is a constant. Therefore

f(z) =

(
f(z) + f(z)

2

)
+ i

(
f(z) − f(z)

2i

)

is constant. Thus, we complete the proof of Theorem 5.37.
The word “domain” in Theorem 5.37 cannot be replaced by “circle”. To

see this, observe that the nonconstant entire function f(z) = zn, n a positive
integer, has constant modulus on any circle centered at the origin.

Thus far, our discussion of analyticity has been confined to single-valued
functions. It makes no sense for us to talk about derivatives of multiple-valued
functions; because in considering the expression

lim
z→z0

f(z) − f(z0)
z − z0

,

we have no consistent rule to determine which value for f(z) to take as z
varies towards z0. It does, however, make sense to discuss the analyticity for
a fixed branch of a multiple-valued function. Recall that

f(z) = Log z = ln |z| + iArg z (z �= 0,−π < Arg z < π)

is a single-valued function, continuous when −π < Arg z < π. Since f(z) is
not continuous on the negative real axis, it certainly is not differentiable there.

We will now show that f(z) is analytic at all points of continuity. Switching
to the polar representation, we get

f(z) = Log z = ln r + iθ (z = reiθ,−π < θ < π). (5.26)

Note that
∂f

∂r
=

1
r

and
∂f

∂θ
= i.

In view of Exercise 5.29(13), it follows that f ′(z) exists, with

f ′(z) = e−iθ ∂f

∂r
=

1
iz

∂f

∂θ
=

1
z

(−π < Arg z < π).

Alternatively (since w = log z ⇐⇒ z = ew = eLog z+2kπi), we simply use the
chain rule to differentiate

z = eLog z, z ∈ D = C \{x + i0 : x ≤ 0}

and obtain
1 = eLog z d

dz
( Log z) = z

d

dz
( Log z).
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Thus,
d

dz
( Log z) =

1
z
, z ∈ D.

Any other branch of log z, with branch cut along the negative real axis, differs
from Log z in the cut plane by a multiple of 2πi, and hence also has the same
derivative 1/z in the cut plane.

While log z is discontinuous for negative real values when the branch cut
is along the negative real axis, we can find a branch of log z for which log z is
analytic on the negative real axis. To illustrate, we can easily show that the
function

f(z) = log z (0 < Arg z < 2π)

is analytic at all points in the plane cut along the positive real axis, with
f ′(z) = 1/z at all such points. Note that this function cannot be defined to be
continuous for positive real values. Thus, given any nonzero complex number
z0, there exists a branch for which log z is analytic at z0 with derivative 1/z0.

As we have seen in the previous chapter, determining properties of the loga-
rithm enables us to determine properties of several related classes of functions.
To illustrate, we can choose a definite branch of the logarithm, and write

f(z) = z1/2 = e(1/2) log z (z �= 0).

Then by the chain rule,

f ′(z) =
1
2z

e
1
2 log z =

1
2elog z

e
1
2 log z =

1
2e

1
2 log z

=
1

2z1/2

where we have used the same branch of z1/2 on both sides of the identities.
More generally, if f(z) = zα = eα log z for some complex number α and some
determination of log z for z on the cut plane (which depends on our choice),
then

f ′(z) =
α

z
eα log z = αzα−1.

Example 5.38. We wish to determine the largest domain D in which the
principal branch of

√
ez + 1 is analytic, and compute its derivative for z in

that domain. To do this, we recall that the principal branch of
√

ez + 1 is

f(z) = e(1/2) Log (ez+1).

Note that Log z is analytic in C \ (−∞, 0], but not in any larger domain.
Consequently, the largest domain of analyticity is C minus those points in the
complex plane for which ez + 1 is real and ≤ 0. To find these points, we note
that

• ez = exeiy is real iff y = nπ for some n ∈ Z
• ez > 0 if n is even
• ez < 0 if n is odd.
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For even n, and z = nπ, we have ez = ex > 0 for all x and so

ez + 1 = ex + 1 > 0 for all x ∈ R.

On the other hand, if n is odd and z = nπ, then ez = −ex so that

ez + 1 = −ex + 1 ≤ 0 iff x ≥ 0.

Thus, the domain of analyticity is C \ {x + iy : x ≥ 0, y = (2k + 1)π, k ∈ Z}
and

f ′(z) =
ez

2
√

ez + 1
=

ez−(1/2) Log (ez+1)

2
. •

Remark 5.39. The functions zα and αz should not be confused. The former
is a multiple-valued function of z when α is not an integer; each branch is
analytic in the cut plane and has derivative equal to αzα−1. The latter, αz,
which can be expressed as ez log α, is a single-valued entire function once a
branch is chosen for log α (α �= 0); the derivative of αz is then given by
αz log α. •

We can also use the chain rule and the logarithm to find the derivatives
of the inverse trigonometric functions. Recall that

sin−1 z = −i log[iz + (1 − z2)1/2].

Since
d

dz
(1 − z2)1/2 = −z(1 − z2)−1/2,

where the same branch is used on both sides of the equation, it follows that

d

dz
(sin−1 z) =

−i[i − z(1 − z2)−1/2]
iz + (1 − z2)1/2

=
1

(1 − z2)1/2
.

More generally, if f is analytic and nonzero at a point z, then a branch may
be chosen for which log f is also analytic in a neighborhood of z, with

d

dz
[log f(z)] =

f ′(z)
f(z)

.

Furthermore, f(z) = |f(z)|ei arg f(z) so that

log f(z) = log |f(z)| + i arg f(z).

Hence log |f(z)|, since it is the real part of an analytic function, is harmonic
at all points where f(z) is analytic and nonzero. Setting f = u + iv, the har-
monicity of log |f(z)| = log

√
u2 + v2 may also be proved directly by laborious

computation.
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Questions 5.40.

1. Under what conditions may we deduce properties of analytic functions
from those of harmonic functions?

2. What properties do analytic and harmonic functions not have in com-
mon?

3. When will arg f(z) be a harmonic function?
4. How do the properties of |f(z)| and log |f(z)| compare?
5. If a function u(x, y) is harmonic everywhere in a domain D, does there

exist a function v(x, y) for which u(x, y)+iv(x, y) is analytic everywhere
in D?

6. Is f = u + iv analytic on a domain whenever u and v are harmonic on
D?

7. Does f(z) = ux − iuy represent an analytic function on a domain D
whenever u = u(x, y) is harmonic on D?

8. Let u and v be harmonic on a domain D, and U = uy − vx and V =
ux + vy on D. Is F (z) = U + iV analytic on D?

9. What is the largest domain on which f(z) = zz is analytic?
10. What is the largest domain on which f(z) = 3z3

is analytic?
11. For what values of z does u = x3 − y3 satisfy the Laplace equation?

Why is this function not harmonic?
12. Does there exist an analytic function with real or imaginary part as

y2 − 2xy?
13. Suppose that f(z) is analytic for |z| < 1 such that f(1/2) = 3 and |f(z)|

is constant for |z| < 1. Does f(z) = 3 for |z| < 1?

Exercises 5.41.

1. Let

f(z) =

⎧⎨
⎩xy

x2 − y2

x2 + y2
if x2 + y2 �= 0,

0 if x2 + y2 = 0.

Show that fxy(0, 0) = (fx)y(0, 0) �= fyx(0, 0) = (fy)x(0, 0).
2. Show that the following functions are harmonic, and then determine

their harmonic conjugates.
(a) u = ax + by, a and b real constants
(b) u =

y

x2 + y2
, x2 + y2 �= 0

(c) u = x3 − 3xy2

(d) u = Arg z, −π < Arg z < π

(e) u = ex2−y2
cos 2xy

(f) u = 2xy + 3x2y − y3.
3. Using the Cauchy–Riemann equation or the idea of Example 5.34 find

all the analytic functions f = u + iv, where u is given as below:
(a) u(x, y) = ex(x sin y + y cos y), (x, y) ∈ R2
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(b) u(x, y) =
x

x2 + y2
, (x, y) ∈ R2\(0, 0)

(c) u(x, y) = sin x cosh y, (x, y) ∈ R2

(d) u(x, y) = x3 − 3xy2 − 2x, (x, y) ∈ R2

(e) u(x, y) = x2 − y2 − 2xy + 2x − 3y, (x, y) ∈ R2.
4. Let f = u + iv be an entire function such that

u + v = 2e−x(cos y − sin y).

Construct f in terms of z.
5. For what nonnegative integer values of n is the real-valued function

u(x, y) = xn−yn harmonic? Find the corresponding harmonic conjugate
function in each possible values of n.

6. Show that u(x, y) = xy is harmonic in R2. Find the conjugate harmonic
function v(x, y) in R2. Write u + iv in terms of z.

7. Choose the constant a so that the function u = ax2y − y3 + xy is
harmonic, and find all harmonic conjugates.

8. Choose the constants a, b, c so that u = ax3 + bx2y + cxy2 + dy3 gives
the more general harmonic polynomial, and find all the harmonic con-
jugates.

9. Choose the constant a so that u = ax3 + xy2 + x is harmonic in C and
find all analytic functions f whose real part is the given u.

10. Show that neither xy(x − y) nor xy(x − 2y) can be a real part of an
analytic function.

11. Use the method of this section to attempt to find a function v(x, y) for
which x2 + iv(x, y) is analytic, and explain where the method breaks
down.

12. If u1 and u2 are harmonic on D, show that au1 + bu2, a and b real
constants, is also harmonic at D.

13. Suppose u and v are conjugate harmonic functions. Show that uv is a
harmonic function. What are the most general conditions for which the
product of two harmonic functions is harmonic?

14. If f = u + iv is analytic on a domain D, then show that uv is harmonic
on D.

15. Find all harmonic functions u(x, y) in the unit disk x2 + y2 < 1 such
that uy = 0 for x2 + y2 < 1. What can be said about u(x, y)?

16. Suppose f(z) has a derivative of order n. Show that

f (n)(z) =
∂(n)f

∂x(n)
= (−i)n ∂(n)f

∂y(n)
.

17. Show that if the real and imaginary parts of both f(z) and zf(z) are
harmonic in a domain D, then f(z) is analytic in D.

18. Define a branch of (1− z2)1/2 so that f(z) = iz +(1− z2)1/2 is analytic
in the domain Ω = C \{z : Im z = 0 and |Re z| ≥ 1}.

19. Find the derivative of the following functions:

(a) cos−1 z (b) tan−1 z (c) sec−1 z.
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Power Series

From sequences of numbers, we turn to sequences of functions. Then our
concern is with both the form of convergence and the behavior of the limit
function. Convergence, determined at each point in a set, need not require
the limit function to retain any of the properties common to each function in
the sequence. But if a certain “rapport” exists between the sequence of func-
tions and the set, then the limit function will be forced to confirm to definite
standards established by the sequence. This stronger type of convergence, in
which the set takes precedence over its points, is called uniform convergence.

The most important sequences of functions are those expressible as power
series. The limit functions for this class are always analytic inside their re-
gions of convergence. In many instances, a power series behaves like a “big”
polynomial.

6.1 Sequences Revisited

Given a (real or complex) sequence {an}n≥1, we associate a new sequence
{sn}n≥1 of partial sums sn related by

sn =
n∑

k=1

ak.

The symbol
∑∞

k=1 ak is called a series. The series is said to converge or to di-
verge according as the sequence {sn}n≥1 is convergent or divergent. If {sn}n≥1

converges to s, the sum (or value) of the series is said to be s, and we write

s = lim
n→∞ sn =

∞∑
k=1

ak.

Hence for convergent series the same symbol is used to denote both the series
and its sum. We call sn the nth partial sum of the series and an the nth term
in the series.
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By definition, every theorem about series may be formulated as a theorem
about sequences (of partial sums). The converse is also true.

Theorem 6.1. Given any sequence {sn}n≥1, there exists a sequence {an}n≥1

such that sn =
∑n

k=1 ak for every n.

Proof. We choose a1 = s1 and an = sn − sn−1 for n > 1. Then
n∑

k=1

ak = a1 +
n∑

k=2

(sk − sk−1) = s1 + (sn − s1) = sn.

Thus, the definition of series does not furnish us with a “new” concept. It
merely provides an additional way of stating new theorems and restating old
ones. Because taking limits of sequences is a linear operation, it follows that
summing series is also a linear operation. For instance, if sn → s and tn → t,
then

sn ± tn → s ± t and csn → cs,

where c is a complex constant. If we apply these properties to partial sums of
series we conclude the following:

Proposition 6.2. If
∑∞

k=1 ak = α and
∑∞

k=1 bk = β, then

∞∑
k=1

(ak ± bk) = α ± β and
∞∑

k=1

cak = cα.

The Cauchy criterion for sequences (Theorem 2.20) may be reworded as
follows: Let sn =

∑n
k=1 ak. The series

∑∞
k=1 ak converges if and only if for

every ε > 0, there exists an integer N such that m,n > N implies

|sm − sn| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε. (6.1)

By letting m = n + p, (6.1) may be written as

|sn+p − sn| =

∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ < ε (p = 1, 2, . . . ), for n > N. (6.2)

The Cauchy criterion is the most general test for convergence of a series.
Some of the methods frequently used in elementary calculus, like the ratio
and integral tests, require very restrictive hypotheses, and even then do not
supply necessary as well as sufficient conditions for convergence.

Many of the familiar properties of series are immediate consequences of
(6.2). For example,

Proposition 6.3. A necessary condition for the series
∑∞

k=1 ak to be conver-
gent is that ak → 0 as k → ∞.
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Proof. This result follows on setting p = 1 in (6.2). Indeed, if
∑∞

k=1 ak con-
verges, {sn} converges. Therefore, sn − sn−1 = an → 0 as n → ∞.

It is often useful to consider along with the given series
∑∞

k=1 ak the corre-
sponding series of moduli

∑∞
k=1 |ak|. A series

∑∞
k=1 ak is said to be absolutely

convergent if
∑∞

k=1 |ak| converges. Applying∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ ≤
n+p∑

k=n+1

|ak|

to (6.2), we see that the absolute convergence of a series guarantees its con-
vergence. More precisely, we have

Proposition 6.4. If a series
∑

ak converges absolutely, then
∑

ak converges.

Similarly, if |an| ≤ K|bn| for every n and for some K > 0, the convergence
of

∑∞
n=1 |an| may be deduced from the convergence of

∑∞
n=1 |bn| by applying

(6.2). Proposition 6.4 can be proved directly with the help of a little trick.
Express

Re ak = (Re ak + |ak|) − |ak|.
Since |Re ak| ≤ |ak|, we have

0 ≤ Re ak + |ak| ≤ 2|ak|.

Hence,
∑

(Re ak + |ak|) converges and
∑

Re ak, being a difference between
two convergent series, converges. Similarly,

∑
Im ak converges. Consequently,∑

ak converges.
Suppose all the terms of the sequence {an} are real and positive. Then

sn − sn−1 = an > 0,

and the sequence of partial sums {sn} is a monotonically increasing sequence.
Since a monotone sequence of real numbers converges if and only if it is
bounded (Theorem 2.15), the series

∑∞
k=1 ak of positive real numbers con-

verges if and only if the sequence {sn} is bounded. That the positivity of
{an} cannot be dropped from the hypotheses is seen by letting an = (−1)n.
Here, the series

∑∞
k=1 ak does not converge despite the fact that

sn =
n∑

k=1

(−1)k

is bounded in absolute value by 1.
Our next theorem shows an interesting relationship between a sequence

and its sequence of partial sums.

Theorem 6.5. Suppose that an > 0 for every n ∈ N and that
∑∞

n=1 an di-
verges. If sn =

∑n
k=1 ak, then
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(i)
∑∞

n=1

an

sn
diverges;

(ii)
∑∞

n=1

an

s2
n

converges.

Proof. According to the Cauchy criterion, the series in (i) will diverge if, for
any integer n, an integer p can be found such that

an+1

sn+1
+

an+2

sn+2
+ · · · +

an+p

sn+p
>

1
2
.

Since {sn} is an increasing sequence,

n+p∑
k=n+1

ak

sk
≥

∑n+p
k=n+1 ak

sn+p
=

sn+p − sn

sn+p
= 1 − sn

sn+p
. (6.3)

But sn+p → ∞ as p → ∞. Thus, p may be chosen so large that sn+p > 2sn.
For such a choice of p, it follows from (6.3) that

n+p∑
k=n+1

ak

sk
>

1
2
.

Hence,
∑∞

n=1(an/sn) diverges. To prove (ii), observe that

an

s2
n

≤ an

snsn−1
=

sn − sn−1

snsn−1
=

1
sn−1

− 1
sn

.

Applying the Cauchy criterion, we have

n+p∑
k=n+1

ak

s2
k

≤
n+p∑

k=n+1

(
1

sk−1
− 1

sk

)
=

1
sn

− 1
sn+p

<
1
sn

.

For any preassigned ε > 0, we may choose n large enough so that 1/sn < ε.
Therefore,

∑∞
n=1(an/s2

n) converges.

Corollary 6.6. The series
∑∞

n=1(1/n) diverges and
∑∞

n=1(1/n2) converges.

Proof. Apply Theorem 6.5, with an ≡ 1.

Moreover, a standard argument from real variable theory gives that

∞∑
n=1

1
nα

converges for α > 1.

Corollary 6.7. If an > 0 and
∑∞

n=1 an diverges, then there exists a positive
sequence {bn} such that bn/an → 0 and

∑∞
n=1 bn diverges.
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Proof. Choose bn = an/sn, and apply Theorem 6.5.

This corollary shows that there is no “slowest” diverging series. The reader
will be asked, in Exercise 6.19(4) to show that there is no slowest converging
series.

We shall return to series after establishing additional properties for se-
quences. We prove the obvious, but useful

Theorem 6.8. (Mousetrap Principle) Let 0 ≤ an ≤ bn for every n, and
assume that limn→∞ bn = 0. Then limn→∞ an = 0.

Proof. Given ε > 0, there exists an integer N such that |bn| < ε for n > N .
But then we also have |an| ≤ |bn| < ε for n > N . Hence, an → 0.

Theorem 6.9. For α > 0, β > 0, and x real, we have

(i) lim
x→∞

(lnx)α

xβ
= 0;

(ii) lim
x→∞

xα

eβx
= 0.

Proof. Setting f(x) = lnx and g(x) = xβ/α, we apply l’Hôpital’s rule for
functions of a real variable to obtain

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

= lim
x→∞

1
(β/α)xβ/α

= 0.

Therefore, (
lnx

xβ/α

)α

=
(lnx)α

xβ
→ 0 as x → ∞,

and (i) is proved.
Letting y = lnx in (i), and observing that y → ∞ as x → ∞, we ob-

tain (ii).

Corollary 6.10. For α > 0 and β > 0, we have

(i) lim
n→∞

(lnn)α

nβ
= 0;

(ii) lim
n→∞

nα

eβn
= 0;

(iii) lim
n→∞n1/n = 1;

(iv) lim
n→∞ rn = 0 (|r| < 1).

Proof. Letting x = n in Theorem 6.9, we obtain (i) and (ii). Next, n1/n → 1
if (lnn)/n → 0. But this is a special case of (i), and (iii) is proved. Finally,
setting β = − ln |r| in (ii), we have

nα

e−n ln |r| = nα|r|n ≥ |r|n.

Finally, (iv) follows from (ii) and the mousetrap principle.
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Our next example is useful for establishing the convergence of many series.
Consider the geometric series

∑∞
k=0 zk. Then we may express the partial sum

sn = 1 + z + · · · + zn−1 in explicit form. If z = 1, then sn = n; if z �= 1, then
we have

sn =
n∑

k=1

zk−1 =
1 − zn

1 − z
=

1
1 − z

− zn

1 − z
.

When z = 1, {sn} is unbounded and so has no limit. Thus, the geometric
series diverges for z = 1. For z �= 1, we may use the convergence of {zn} to
zero for |z| < 1 to show that

∞∑
k=1

zk−1 =
1

1 − z
(|z| < 1).

On the other hand, if |z| ≥ 1, then the kth term zk−1 does not converge to 0
so that the series does not converge. To summarize

lim
n→∞ sn =

∞∑
k=0

zk =

{ 1
1 − z

for |z| < 1

diverges for |z| ≥ 1

and the convergence of
∑∞

k=0 zk is absolute when |z| < 1. Hence, a series∑∞
n=1 an converges absolutely if there exists a constant r, 0 ≤ r < 1, and a

real number M such that |an| ≤ Mrn for n > N . For example, consider the
series ∞∑

n=1

an, an =
1
3n

+ i
1
4n

,

which converges. But then, how do we sum the series? In view of Proposition
6.2, we have

∞∑
n=1

an =
∞∑

n=1

3−n + i

∞∑
n=1

4−n =
1/3

1 − 1/3
+ i

1/4
1 − 1/4

=
1
2

+
i

3
.

The convergence properties of complex series may be deduced from those
of real series. If {ak} is a sequence of complex numbers, we write ak = αk+iβk,
where {αk} and {βk} are sequences of real numbers. By Theorem 2.12, we
have that the complex series

∑∞
k=1 ak converges if and only if

∑∞
k=1 αk and∑∞

k=1 βk both converge. That is,

∞∑
k=1

(αk + iβk) = α + iβ ⇐⇒
∞∑

k=1

αk = α and
∞∑

k=1

βk = β.

For instance, the series
∞∑

k=1

1 + i cos(1/k)
3k
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converges.
If, in the series

∑
ak, the summation range is (−∞,∞) instead of (0,∞)

(or (1,∞) or (p,∞), where p is a fixed integer), then we have a series of
complex numbers ak, namely,

∑∞
k=−∞ ak. The most efficient way of handling

this is to discuss separately the two series

∞∑
k=0

ak and
−1∑

k=−∞
ak =

∞∑
k=1

a−k

so that the convergence of this series depends on the convergence of both
series. This approach helps us to formulate the following definition. “A series∑∞

k=−∞ ak converges if and only if both
∑∞

k=0 ak and
∑∞

k=1 a−k converge.”
In other words, we write

∞∑
k=−∞

ak = lim
n→∞

n∑
k=0

ak + lim
m→∞

m∑
k=1

a−k

provided both the limits on the right exist. Note that m and n tend inde-
pendently to ∞. According to the definition, it is clear that if

∑∞
k=−∞ |ak|

converges, then
∑∞

k=−∞ ak converges. Moreover,
∑∞

k=−∞ |ak| converges pre-
cisely when both

∑∞
k=0 |ak| and

∑∞
k=1 |a−k| converge.

Suppose {an} is a bounded sequence of complex numbers, and that A is
the set of subsequential limits of {an}. Some properties of A have already been
discussed. For instance, the set A is nonempty (Theorem 2.17) and consists of
one point if and only if {an} converges (Theorem 2.14). To insure a pleasant
treatment of Taylor and Laurent series, it is necessary to introduce the so-
called “limit superior” of a sequence {an} of nonnegative real numbers. If
the sequence {an} is real and bounded, the set A has a least upper bound
(Dedekind property).

Let {an} be a real bounded sequence, and let A be the set of subsequential
limits of {an}. Setting a∗ = lubA, we call a∗ the limit superior of {an}, and
write

lim sup
n→∞

an = a∗ or limn→∞an = a∗.

This definition may be extended to unbounded real sequences. If {an} is un-
bounded above, we say that

lim sup
n→∞

an = ∞;

whereas, if all but a finite number of an are less than any preassigned real
number, we say that

lim sup
n→∞

an = −∞.

A useful counterpart to the limit superior is the limit inferior. For a
bounded real sequence {an} we set a∗=glb { subsequential limits }, and write
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lim inf
n→∞ an = a∗ or limn→∞an = a∗.

If {an} is unbounded below, we say that

lim inf
n→∞ an = −∞;

whereas, if all but a finite number of an are greater than any preassigned real
number, we say that

lim inf
n→∞ an = ∞.

Formulating theorems in terms of limit superior or limit inferior, rather
than in terms of limit, has one distinct advantage. In the extended real number
system (±∞ included), the limit superior and limit inferior of a real sequence
always exist. This enables us to prove theorems about sequences without wor-
rying about the existence of limits.

Examples 6.11. (i) If an = 1
n , then lim supn→∞ an = 0.

(ii) If an = (−1)n, then lim supn→∞ an = 1 and lim infn→∞ an = −1.
(iii) If an = 3n, then {an} is not bounded above and lim supn→∞ an = ∞.
(iv) If an = −n+(−1)nn, then the sequence −2, 0,−2(3), 0,−2(5), . . . is not

bounded below. Thus, lim supn→∞ an = 0 and lim infn→∞ an = −∞.
(v) If an = 1 − (1/2)n for n ∈ N, then lim supn→∞ an = 1.
(vi) If an = (1 + c)n with c > 0 and n ∈ N, then lim supn→∞ an = ∞.
(vii) Let {an} = n sin2(nπ/4). Since 0 ≤ an < ∞ for every n, no subsequence

of {an} can approach a value less than 0. In order to show that

lim sup
n→∞

an = ∞ and lim inf
n→∞ an = 0,

it suffices to find one (out of many) subsequences that approach the
desired value. We have

lim sup
n→∞

an = lim
n→∞ a4n+2 = lim

n→∞(4n + 2) = ∞

and
lim inf
n→∞ an = lim

n→∞ a4n = lim
n→∞ 4n.0 = 0.

(viii) Let an = (1 + 1/n) cos nπ. Then

lim sup
n→∞

an = lim
n→∞ a2n = 1 and lim inf

n→∞ an = lim
n→∞ a2n+1 = −1.

(ix) Let an = sin(nπ/2) + sin(nπ/4). Then

lim sup
n→∞

an = lim
n→∞ a4n+1 = 1 +

√
2

2

and

lim inf
n→∞ an = lim

n→∞ a4n−1 = −1 −
√

2
2

.
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(x) Let an = n cos nπ. Then

lim sup
n→∞

an = lim
n→∞ a2n = ∞ and lim inf

n→∞ an = lim
n→∞ a2n−1 = −∞.

(xi) Let an = 5n cos nπ − n2. Then an ≤ 5n − n2 for every n, so that

lim sup
n→∞

an = lim inf
n→∞ an = −∞. •

It is clear that the limit superior and limit inferior are both unique, and
that a real sequence {an} converges to L, L finite, if and only if

lim sup
n→∞

an = lim inf
n→∞ an = L.

But some of the standard limit theorems are false for both the limit superior
and the limit inferior. For instance, if an = (−1)n and bn = (−1)n+1, then

lim sup
n→∞

(an + bn) = 0 �= lim sup
n→∞

an + lim sup
n→∞

bn = 2

and
lim inf
n→∞ (an + bn) = 0 �= lim inf

n→∞ an + lim inf
n→∞ bn = −2.

However, we do have the following inequalities:

Theorem 6.12. Let {an} and {bn} be real, bounded sequences. Then, we have

(i) lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

(ii) lim inf
n→∞ (an + bn) ≥ lim inf

n→∞ an + lim inf
n→∞ bn.

Proof. Let lim supn→∞ an = a and lim supn→∞ bn = b. Assume inequality (i)
is false. Then for some ε > 0 there is a subsequence {ank

+ bnk
} of {an + bn}

such that ank
+ bnk

> a + b + ε for all nk. But then either

ank
> a +

ε

2
or bnk

> b +
ε

2

infinitely often. This implies that either

lim sup
n→∞

an ≥ a +
ε

2
or lim sup

n→∞
bn ≥ b +

ε

2

(Why?). This contradicts our assumption, and (i) is proved. The proof of (ii)
is similar, and will be omitted.

It turns out that absolute convergence for (power) series plays a central
role in complex analysis as it is much easier to test for absolute convergence
than for convergence by other means. The nth root test is one such useful
result in determining convergence properties of power series.
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Theorem 6.13. (Root test) Let {an}n≥1 be a complex sequence, and suppose
that

lim sup
n→∞

|an|1/n = L.

Then
∑∞

n=1 an converges absolutely if L < 1, and diverges if L > 1.

Proof. If L < 1, choose r such that L < r < 1. Then, we have |an|1/n < r for
large values of n; that is,

|an| < rn for n > N.

The convergence of
∑∞

n=1 |an| now follows from the convergence of
∑∞

n=1 rn

(|r| < 1).
If L > 1, then |an|1/n > 1 for infinitely many values of n. But then |an| > 1

infinitely often. Hence, an � 0 and the series
∑∞

n=1 an cannot converge.

Remark 6.14. When L = 1, the root test gives no information. The series∑∞
n=1(1/n) diverges and

∑∞
n=1(1/n2) converges. However,

lim sup
n→∞

∣∣∣∣ 1n
∣∣∣∣
1/n

= lim sup
n→∞

∣∣∣∣ 1
n2

∣∣∣∣
1/n

= 1. •
Theorem 6.15. (Ratio test) Let {an}n≥1 be a complex sequence, and sup-
pose that

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L and lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = l.

Then
∑∞

n=1 an converges absolutely if L < 1, and diverges if l > 1. The test
offers no conclusion concerning the convergence of the series if l ≤ 1 ≤ L.

We leave the proof as an exercise. To show that the test fails in the last
case, we simply consider the series in Remark 6.14 and observe that L = l = 1,
in both cases.

As usual we easily have the following corollary.

Corollary 6.16. Let {an}n≥1 be a complex sequence, and suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L. (6.4)

Then
∑∞

n=1 an converges absolutely if L < 1, and diverges if L > 1. The test
offers no conclusion concerning the convergence of the series if L = 1.

Clearly, from Theorem 6.13, the conclusion of the corollary continues to
hold if (6.4) is replaced by limn→∞ |an|1/n = L.

Example 6.17. Consider the series
∑∞

n=1(1/n!). Then the ratio test is easier
to apply and it is not obvious that lim supn→∞ |(1/n!)|1/n < 1. Similarly, the
ratio test may be easier to examine the convergence property of the series∑∞

n=1(−1)n(1 − i)n/n!. •
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Questions 6.18.

1. What types of theorems for real sequences remain valid for complex
sequences?

2. Does there exist a convergent series
∑∞

n=1 an for which limn→∞ an �= 0?
3. Does there exist a divergent series

∑∞
n=1 an for which limn→∞ an = 0?

4. Do the series
∑∞

n=N an and
∑∞

n=1 an converge or diverge together?
5. What does it mean to say that there is no slowest converging series?
6. Why is the Mousetrap Principle so named?
7. For which convergent series can you determine the sum?
8. What alternate definitions for limit superior and limit inferior might we

have given?
9. Can limit inferior be defined in terms of limit superior?

10. What are some advantages and disadvantages of allowing the limit su-
perior of a sequence to assume the values ±∞?

11. How does the limit superior of a product compare with the product of
limit superiors?

12. Can Theorem 6.12 be modified to include unbounded sequences?
13. If |an|1/n < 1 for every n ≥ 1, does

∑∞
n=1 an necessarily converge?

14. If zn → z0 and wn → w0, does 1
n

∑n
k=1 zkwk → z0w0?

15. If zn → z0, does 1
2n

∑n
k=1

(
n
k

)
zk → z0?

Exercises 6.19.

1. Let an = αn + iβn, αn and βn real. Show that
∑∞

n=1 |an| converges if
and only if both

∑∞
n=1 |αn| converges and

∑∞
n=1 |βn| converges.

2. Let sn =
∑n

k=1 ak. If ak = 1/k, show that s2n+1 − s2n > 1
2 for every n.

If ak = (−1)k+1/k, show that |sn+p − sn| < 2/n for every n and p.
3. Suppose an > 0 for every n. Show that

∑∞
n=1 an diverges if and

only if for any integers M and N , there exists an integer p such that∑N+p
n=N an > M .

4. Let an > 0, and suppose
∑∞

n=1 an converges. If rn =
∑∞

k=n ak, show
that

(a)
∞∑

n=1

an

rn
diverges (b)

∞∑
n=1

an√
rn

converges.

5. Let A be the set of subsequential limits of a complex sequence. Show
that A is closed set.

6. Find the infimum and supremum of the following

(i) 5 + sin(nπ/3) (ii) 1/n + sin(nπ/3) (iii) 1/n + cos(nπ/3).

7. Suppose that {an} is a real sequence and limn→∞ an = a, a �= 0. For
any sequence {bn}, show that
(a) lim sup

n→∞
(an + bn) = lim

n→∞ an + lim sup
n→∞

bn
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(b) lim inf
n→∞ (an + bn) = lim

n→∞ an + lim inf
n→∞ bn

(c) lim sup
n→∞

anbn = lim
n→∞ an lim sup

n→∞
bn

(d) lim inf
n→∞ anbn = lim

n→∞ an lim inf
n→∞ bn.

8. Show that lim supn→∞ an = L, L finite, if and only if the following
conditions hold: For any ε > 0,
a) an < L + ε for all but a finite number of n;
b) an > L − ε infinitely often.

9. Show that lim infn→∞ an = L, L finite, if and only if the following
conditions hold: For any ε > 0,
a) an < L + ε infinitely often;
b) an > L − ε for all but a finite number of n.

10. Let {an} be a complex sequence.
a) If lim supn→∞ |an+1/an| = L < 1, show that

∑∞
n=1 an converges

absolutely.
b) lim infn→∞ |an+1/an| = L > 1, show that

∑∞
n=1 an diverges.

Show by an example that this result provides no information about the
convergence or divergence of the series when L = 1.

11. Suppose an > 0 for every n. Show that

lim inf
n→∞

an+1

an
≤ lim inf

n→∞ a1/n
n ≤ lim sup

n→∞
a1/n

n ≤ lim sup
n→∞

an+1

an
.

6.2 Uniform Convergence

A sequence of functions {fn} converges pointwise to a function f on a set
E (fn → f) if to each z0 ∈ E and ε > 0, there corresponds an integer
N = N(ε, z0) for which

|fn(z) − f(z0)| < ε whenever n > N(ε, z0).

To say that a sequence of functions {fn} converges pointwise on a set E is
equivalent to saying that the sequence of numbers {fn(z0)} converges for each
z0 ∈ E. The limit function f is then defined by

lim
n→∞ fn(z0) = f(z0) (z0 ∈ E).

The integer N in the definition of pointwise convergence may, in general,
vary with the points in the set. If, however, one integer can be found that
works for all such points, the convergence is said to be uniform. That is, a
sequence of functions {fn} converges uniformly to f on a set E (fn ⇒ f) if to
each ε > 0, there corresponds an integer N = N(ε) such that, for all z ∈ E,

|fn(z) − f(z)| < ε whenever n > N(ε).

Thus, when n is large, fn(z) is required to be uniformly “close” to f(z) on E.
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We emphasize that uniform convergence on a set implies (pointwise) con-
vergence. A formulation of the negation of uniform convergence will be helpful
when producing examples that show the converse to be false. The convergence
of {fn} to f on E is not uniform if there exists an ε > 0 such that to each
integer N there corresponds an integer n(> N) and a point zn ∈ E for which
|fn(zn) − f(zn)| ≥ ε.

Recall the distinction between continuity and uniform continuity. A contin-
uous function is uniformly continuous on a set if a single δ = δ(ε) can be found
that works for all points in the set. In Chapter 2 the function f(z) = 1/z was
shown to be continuous, but not uniformly continuous, on the set 0 < |z| < 1.
The following example is an analog for convergence.

Example 6.20. Let fn(z) = 1/(nz). Then we see that the sequence {fn(z)}
converges pointwise, but not uniformly, to the function f(z) ≡ 0 on the set
0 < |z| < 1.

For a given ε > 0, in order that

|fn(z) − 0| = |1/(nz)| < ε,

it is necessary that n > 1/(ε|z|). So the corresponding N = N(z; ε) is an
integer greater than 1/(ε|z|). Note that, as |z| decreases, the corresponding N
increases without bound. Thus, we say that the sequence converge pointwise
but not uniformly on {z : 0 < |z| < 1}.

Alternatively, we argue in the following manner. If this convergence were
uniform, there would exist an integer N for which the inequality |1/Nz| <
ε < 1 would be valid for all z, 0 < |z| < 1. But the inequality does not hold
for z = 1/N . •

We have shown that the convergence in the above example is not uniform
because ∣∣∣∣fn

(
1
n

)
− f

(
1
n

)∣∣∣∣ = 1 for all n.

Example 6.21. Let fn(z) = 1/(1+nz). Then the sequence {fn(z)} converges
uniformly in the region |z| ≥ 2, but does not converge uniformly in the region
|z| ≤ 2. Indeed, the sequence {fn} converges pointwise everywhere to the
function

f(z) =
{

0 if z �= 0
1 if z = 0.

If |z| ≥ 2, then

|fn(z)| =
∣∣∣∣ 1
1 + nz

∣∣∣∣ ≤ 1
|nz| − 1

≤ 1
2n − 1

≤ 1
n

.

Therefore, |fn(z)| < ε whenever n > 1/ε, which proves uniform convergence
in the region |z| ≥ 2.
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If the convergence were uniform for |z| ≤ 2, there would exist an integer
N for which the inequality |fN (z) − f(z)| < 1

2 would be valid for all z in the
region. But∣∣∣∣fn

(
1
n

)
− f

(
1
n

)∣∣∣∣ =
∣∣∣∣ 1
1 + n · (1/n)

− 0
∣∣∣∣ =

1
2

for every n. •
Remark 6.22. Theorem 2.44 states that a function continuous on a com-
pact set is uniformly continuous. The above example shows that pointwise
convergence, even on a compact set, need not imply uniform convergence. •
Example 6.23. Set fn(z) = zn. Then the sequence {fn(z)} converges point-
wise on the set |z| < 1 and uniformly on the set |z| ≤ r < 1.

The pointwise convergence for |z| < 1 follows from Corollary 6.10(iv). Note
that for r < 1, given ε > 0,

rn < ε ⇐⇒ n >
ln ε

ln r
.

Since rn → 0 (r < 1), an integer N = N(ε) may be found for which rn < ε
(n > N > ln ε

ln r ). But then,

|zn| ≤ rn < ε (|z| ≤ r, n > N(ε)).

Hence, {fn(z)} converges uniformly to zero in the disk |z| ≤ r. Remember
that the choice of N with N > ln ε

ln r is possible for an arbitrary ε > 0 and
0 < r < 1. However, for each fixed ε > 0, as r → 1−, N must be increased
without bound. It follows that the convergence is not uniform for |z| < 1.

Alternatively, if the convergence were uniform on the set |z| < 1, then for
sufficiently large n the inequality |zn| < ε would be valid for all z, |z| < 1.
Choosing z = 1−1/n, we have zn = (1−1/n)n, and, from elementary calculus(

1 − 1
n

)n

→ 1
e

as n → ∞.

Hence, |zn| > 1
3 (z = 1− 1/n, n > N), and the convergence is not uniform on

|z| < 1. •
Example 6.24. Let fn(z) = z/n on C. Then fn(z) → f(z) ≡ 0 on C but not
uniformly. Note that for a given ε > 0

|fn(z) − 0| =
∣∣∣ z
n

∣∣∣ < ε ⇐⇒ n >
|z|
ε

showing that, as |z| increases, the corresponding N increases without bound.
It follows that the sequence converges pointwise but not uniformly on C.
On the other hand if we restrict the domain to a bounded subset of C, say
Ω = {z ∈ C : |z| < 2006}, then the convergence is uniform. •
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Example 6.25. We wish to show the sequence fn(z) = z/n2 converges uni-
formly to f(z) ≡ 0 for |z| ≤ R, but does not converge uniformly in the plane.

To do this, we recall that for |z| ≤ R, the inequality

|fn(z)| ≤ R

n2
< ε (n >

√
R/ε)

shows the convergence to be uniform on any disk |z| ≤ R. But if the conver-
gence were uniform in C, then we would have |z/N2| < 1 for some integer N
and for all z. Choosing z = N2 elicits the appropriate contradiction. •

The uniform convergence of a sequence {fn} on E is often deduced from
the convergence of {fn} at some point z = z0 by showing that the inequality

|fn(z) − f(z)| ≤ |f(z0) − f(z)|

is valid for all z ∈ E.
If a sequence does not converge uniformly, there is usually some “bad

point” to be exploited. In Examples 6.20, 6.21, 6.23, and 6.25 the bad points
were, respectively, z = 0, z = 0, z = 1, and z = ∞. For each such point z0,
the expression limz→z0(limn→∞ fn(z)) could not be replaced by

lim
n→∞( lim

z→z0
fn(z)).

In Example 6.21, for instance,

lim
z→0

(
lim

n→∞
1

1 + nz

)
= 0 while lim

n→∞

(
lim
z→0

1
1 + nz

)
= 1.

The importance of uniform convergence is that it does allow for the inter-
change of many limit operations. This, in turn, compels the limit function to
retain many properties of the sequence.

Theorem 6.26. Suppose {fn} converges uniformly to a function f on E. If
each fn is continuous at a point z0 ∈ E, then the limit function f is also
continuous at z0. That is,

lim
z→z0

(
lim

n→∞ fn(z)
)

= lim
n→∞

(
lim

z→z0
fn(z)

)
.

Proof. We must show that for any ε > 0, there exists a δ > 0 such that
|f(z) − f(z0)| < ε for all z in E satisfying |z − z0| < δ. The inequality

|f(z) − f(z0)| ≤ |f(z) − fn(z)| + |fn(z) − fn(z0)| + |fn(z0) − f(z0)| (6.5)

is valid for every n. The uniform convergence of {fn} allows us to choose N
independent of z so that

|f(z) − fN (z)| <
ε

3
(z ∈ E).
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Letting n = N in (6.5), we have

|f(z) − f(z0)| <
ε

3
+ |fN (z) − fN (z0)| +

ε

3
. (6.6)

By the continuity of fN at z = z0,

|fN (z) − fN (z0)| <
ε

3
(6.7)

for z sufficiently close to z0. Combining (6.6) and (6.7), the desired result
follows.

Remark 6.27. Theorem 6.26 furnishes us with a necessary, but not sufficient,
condition for uniform convergence. In Example 6.23, it was shown that the
sequence of continuous functions {zn} converges nonuniformly in the region
|z| < 1 to the continuous function f(z) ≡ 0. However, in Example 6.21, the
discontinuity of the limit function at z = 0 rules out uniform convergence for
the sequence {1/(1 + nz)} in any region containing the origin. •

Our definition and discussion of uniform convergence remains valid for real-
valued functions of a real variable. In fact, the same conclusions may be drawn
from the preceding four examples when z is replaced by x and the regions are
replaced by their corresponding intervals. Moreover, there is an interesting
geometric interpretation to uniform convergence of real-valued functions. If
{fn(x)} converges uniformly to f(x) on a set E, then for sufficiently large n
we have

f(x) − ε < fn(x) < f(x) + ε for all x in E.

This means that there is some curvilinear strip of vertical width 2ε that con-
tains the graph of all functions y = fn(x), with n > N , and that each such
curve is never a distance more than ε away from the curve y = f(x).

Example 6.28. Let fn(x) = x2 + sinnx/n. We have

|fn(x) − x2| =
∣∣∣∣ sinnx

n

∣∣∣∣ ≤ 1
n

(x real),

and |fn(x) − x2| < ε for n > 1/ε. Hence, the sequence {fn(x)} converges
uniformly to f(x) = x2 on the set of real numbers (see Fig. 6.1). •

Certainly no discussion of convergence is complete without a Cauchy cri-
terion. Rewording Theorem 2.20 for functions, we have that the sequence
{fn(z)} convergence pointwise on E if and only if {fn(z0)} is a Cauchy se-
quence for each z0 ∈ E. That is, to each z0 ∈ E and ε > 0, there corre-
sponds an integer N = N(ε, z0) for which |fn(z0) − fm(z0)| < ε whenever
n, m > N(ε, z0).

A sequence {fn} is said to be uniformly Cauchy on E if to each ε > 0
there corresponds an integer N = N(ε) such that, for all z ∈ E,

|fn(z) − fm(z)| < ε whenever n, m > N(ε).
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Figure 6.1. Illustration for uniform convergence

Theorem 6.29. A sequence of functions converges uniformly on a set E if
and only if the sequence is uniformly Cauchy on E.

Proof. Suppose {fn} converges uniformly to f on E. Then, given ε > 0,

|fn(z) − f(z)| <
ε

2
for n > N(ε) and for all z ∈ E.

But then, for n, m > N(ε), we have

|fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |fm(z) − f(z)| <
ε

2
+

ε

2
= ε.

Hence, the sequence {fn} is uniformly Cauchy on E.
Conversely, suppose {fn} is uniformly Cauchy on E. In particular, {fn(z0)}

is a Cauchy sequence for each z0 ∈ E, and thus {fn} converges pointwise to
a function f . We wish to show that this convergence is uniform. Given ε > 0,
there exists an integer N = N(ε) such that n, m > N implies

|fn(z) − fm(z)| <
ε

2
for all z ∈ E. (6.8)

Fixing n(> N) and letting m vary, (6.8) leads to

|fn(z) − f(z)| = lim
m→∞ |fn(z) − fm(z)| ≤ ε

2
< ε. (6.9)

Since (6.9) is valid for all z ∈ E and n > N(ε), the convergence of {fn} to f
is uniform on E.

In the previous section, we saw that properties for sequences of complex
numbers could be reworded as properties for series of complex numbers. The
remainder of this section will be devoted to the conversion from sequences of



170 6 Power Series

complex functions to series of complex functions. As expected, our work will
parallel that of the previous section.

Given a sequence of functions {fn(z)} defined on a set E, we associate a
new sequence of functions {Sn(z)} defined by

Sn(z) =
n∑

k=1

fk(z). (6.10)

For all values of z for which limn→∞ Sn(z) exists, we say that the series,
denoted by

∑∞
k=1 fk(z), converges, and write

f(z) = lim
n→∞Sn(z) =

∞∑
k=1

fk(z).

If {Sn(z)} converges uniformly on a set E, then the series
∑∞

k=1 fk(z) is said
to be uniformly convergent on E. Further, the series

∑∞
k=1 fk(z) is abso-

lutely convergent if
∑∞

k=1 |fk(z)| converges. Moreover, a necessary condition
for

∑∞
k=1 fk(z) to converge uniformly on E is that fk(z) → 0 on E. This fact

is evident if we write
fn = Sn − Sn−1

and allow n → ∞. Also, rewording the Cauchy criterion, we have

Theorem 6.30. The series
∑∞

n=1 fn(z) converges uniformly on a set E if
and only if, to each ε > 0, there corresponds an integer N = N(ε) such that
for all z ∈ E, we have∣∣∣∣∣

n+p∑
k=n+1

fk(z)

∣∣∣∣∣ < ε whenever n > N(ε) (p = 1, 2, 3, . . . ).

Proof. Define Sn by (6.10), and apply Theorem 6.29.

Theorem 6.30 may be used to establish a sufficient condition for the uni-
form convergence of a series, called the Weierstrass M-test or dominated con-
vergence test.

Theorem 6.31. Let {Mn}n≥1 be a sequence of real numbers, and suppose
that |fn(z)| ≤ Mn for all z ∈ E and each n ∈ N. If

∑∞
n=1 Mn converges, then∑∞

n=1 fn(z) converges uniformly (and absolutely) on the set E.

Proof. That
∑∞

n=1 |fn(z)| converges on E follows immediately from the com-
parison test for real series. To verify the uniform convergence of

∑∞
n=1 fn(z)

on E, we invoke the Cauchy criterion for
∑∞

n=1 Mn. Thus, given ε > 0, there
exists an integer N such that, for n > N , we have

n+p∑
k=n+1

Mk < ε (p = 1, 2, 3, . . . ).
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But ∣∣∣∣∣
n+p∑

k=n+1

fk(z)

∣∣∣∣∣ ≤
n+p∑

k=n+1

|fk(z)| ≤
n+p∑

k=n+1

Mk < ε.

The uniform convergence now follows from Theorem 6.30.

Example 6.32. The geometric series
∑∞

n=0 zn converges absolutely for
|z| < 1 and uniformly for |z| ≤ r < 1. Here we are dealing with a series
of functions

∑∞
n=1 fn(z) in the unit disk |z| < 1, where fn(z) = zn. We have

∣∣∣∣ 1
1 − z

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=0

zn

∣∣∣∣∣ ≤
∞∑

n=0

|z|n =
1

1 − |z| (|z| < 1),

and this proves absolutely convergence. Uniform convergence for |z| ≤ r then
follows from the M -test (Theorem 6.31). Indeed, if we fix r < 1 and define
Mk = rk, then

∑∞
k=0 Mk converges, and |zk| ≤ Mk for |z| ≤ r. By the

Weierstrass M -test,
∑∞

k=0 zk converges uniformly for |z| ≤ r, for each r < 1.
We can also show that the series does not converge uniformly in the unit disk
|z| < 1. Setting

Sn(z) =
n−1∑
k=0

zk =
1 − zn

1 − z
,

the sequence {Sn(z)} converges pointwise to f(z) = 1/(1 − z) for |z| < 1.
Choosing z = 1 − 1/n, we have

|Sn(z) − f(z)| =
∣∣∣∣ zn

1 − z

∣∣∣∣ = n

(
1 − 1

n

)n

→ ∞ as n → ∞

(because (1 − 1/n)n → 1/e) showing that the partial sums do not converge
uniformly for |z| < 1. Hence, the uniform convergence of the series cannot be
extended to the disk |z| < 1. •
Example 6.33. The series

∑∞
n=1(cos nz)/n2 converges uniformly and abso-

lutely on the real line. Indeed, since | cos nz| ≤ 1 for all z real, Theorem 6.31
may be applied with Mn = 1/n2 to obtain the desired result. By writing

cos nz = (einz + e−inz)/2,

the reader may verify that cosnz/n2 does not approach 0 as n tends to ∞
unless z is real. Thus,

∑∞
n=1(cos nz)/n2 converges if and only if z is real. •

Example 6.34. The series
∑∞

n=1 2z2/(n2 + |z|) converges absolutely in the
plane and uniformly for |z| ≤ R, for each R > 0.

To see this, it suffices to observe that for any point z0 in the plane,

2|z2
0 |

n2 + |z0|
≤ 2|z2

0 |
n2

.



172 6 Power Series

Now, the absolute convergence in the plane is a consequence of the convergence
of

2|z0|2
∞∑

n=1

1
n2

,

and the uniform convergence on the disk |z| ≤ R follows from the M -test,
with Mn = 2R2/n2. •
Example 6.35. We show that the Riemann zeta function

∞∑
n=1

1
nz

converges absolutely for Re z > 1 and uniformly for Re z ≥ 1 + ε, ε > 0. The
given series is concerned with

∑∞
n=1 fn(z), where fn(z) = n−z. We have

n−z = e−z Log n = e−(x+iy) Log n and
∣∣n−z

∣∣ = e−x ln n = n−x

so that
∑∞

n=1 |n−z| converges for x = Re z > 1. The uniform convergence for
Re z ≥ 1 + ε follows from the M -test, with Mn = 1/n1+ε. •
Questions 6.36.

1. What kinds of sequences of functions converge uniformly in the plane?
2. Can a sequence of unbounded functions converge uniformly?
3. How would you define: {fn} converges uniformly to infinity?
4. Can a sequence of functions converge uniformly on every compact subset

of a region and not converge uniformly in the region?
5. Can a sequence of functions converge pointwise on every compact subset

of a region and not converge pointwise in the region?
6. Can a sequence of discontinuous functions converge uniformly to a con-

tinuous function?
7. Can a sequence of functions converge uniformly, but not absolutely, in

a region? Absolutely, but not uniformly?
8. Suppose that for every ε > 0, there exists an integer N such that

|fN (z) − f(z)| < ε for all z in E. Does {fn} converge uniformly to
f in E? Does {fn} converge pointwise in E?

9. How would Theorem 6.31 be stated as a theorem for sequences?
10. If a sequence of differentiable functions converges uniformly, must the

limit function be differentiable?

Exercises 6.37.

1. Show that fn = un + ivn converges uniformly to f = u + iv if and only
if {un} converges uniformly to u and {vn} converges uniformly to v.

2. Suppose {fn} converges uniformly to f and {gn} converges uniformly
to g on E.
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(a) Show that {fn + gn} converges uniformly to f + g on E.
(b) If, in addition, |fn| ≤ M and |gn| ≤ M for all z ∈ E and all n, show

that {fngn} converges uniformly to fg on E.
3. Show that fn(z) = zn

n converges uniformly for |z| < 1. Show also that
f ′

n(z) does not converge uniformly for |z| < 1 but it does converge
uniformly for |z| ≤ r for r < 1.

4. Suppose that f(z) is unbounded on a set E. Let fn(z) ≡ f(z) for all n,
and let gn(z) = 1/n.
a) Show that fn(z) and gn(z) both converge uniformly on the set E.
b) Show that fn(z)gn(z) converges pointwise, but not uniformly, on E.

5. Show that {fn} converges uniformly on a finite set if and only if {fn}
converges pointwise.

6. Prove the following generalization of Theorem 6.26: Suppose {fn} con-
verges uniformly to a function f on E, and fn is continuous at z0 ∈ E
for infinitely many n. Then the limit function f is also continuous at z0.

7. Suppose {fn} converges uniformly to f on a compact set E, and each
fn is uniformly continuous on E. Prove that f is uniformly continuous
on E. May compactness be omitted from the hypothesis?

8. If
∑∞

n=1 fn(z) converges uniformly on E, show that {fn(z)} converges
uniformly to zero on E. Is the converse true?

9. Let 0 < r < 1 and E = {z : |z| ≤ r} ∪ {z : r ≤ z ≤ 1, z ∈ R}. Show
that

∑∞
n=1(−1)nzn/n converges uniformly, but not absolutely, on E.

10. Find where the following sequences converge pointwise and where uni-
formly.

(a)
z

z2 + n2
(b) ze−nz (c)

enz

n
(d)

1
1 + zn

.

11. In what regions are the following series uniformly convergent? Abso-
lutely convergent?

(a)
∞∑

n=1

(1 − z)zn (b)
∞∑

n=1

z2

(1 + z2)n

(c)
∞∑

n=1

2z

n2 − z2
(d)

∞∑
n=1

1
1 + zn

12. Show that the series
∑∞

n=0 1/[(z + n)(z + n + 1)] converges to 1/z for
z ∈ C \{0,−1,−2, . . . }.

6.3 Maclaurin and Taylor Series

Unfortunately, knowing that an arbitrary series
∑∞

n=1 fn(z) converges (or
diverges) at some point z = z0 gives no information about the series at other
points. However, we can specialize the sequence {fn(z)} to obtain a class
of functions for which the behavior at a point always determines properties
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in a region. This class will play an important role in the theory of analytic
functions.

Let fn(z) = an(z − b)n, where an and b are complex constants. The resul-
tant expression,

a0 +
∞∑

n=1

an(z − b)n =
∞∑

n=0

an(z − b)n, (6.11)

is called a power series in z − b. When b = 0, (6.11) reduces to

∞∑
n=0

anzn, (6.12)

a power series in z. Our efforts will be focused on properties of power series
defined by (6.12). Upon substituting z − b for z, it becomes a simple matter
to translate these properties to those of series defined by (6.12). We state and
prove a result which provides a “qualitative” behavior of a convergent power
series.

Theorem 6.38. Suppose the power series
∑∞

n=0 anzn converges at a point
z = z0. Then

∑∞
n=0 |an| |z|n converges for |z| < |z0| (that is,

∑∞
n=0 anzn

converges absolutely for |z| < |z0|).

Proof. Suppose that
∑∞

n=0 anzn
0 converges. Then anzn

0 → 0 as n → ∞. Hence
there exists a constant M such that |anzn

0 | ≤ M for all n, and

|an| |z|n =
∣∣∣∣anzn

0

(
z

z0

)n∣∣∣∣ ≤ M

∣∣∣∣ z

z0

∣∣∣∣
n

. (6.13)

For |z| < |z0|, the geometric series
∑∞

n=0 |z/z0|n converges. Thus, by (6.13),
∞∑

n=0

|an| |z|n ≤
∞∑

n=0

M

∣∣∣∣ z

z0

∣∣∣∣
n

=
M

1 − |z/z0|
(|z| < |z0|).

Corollary 6.39. If
∑∞

n=0 anzn diverges at a point z = z0, then
∑∞

n=0 anzn

diverges for |z| > |z0|.

Proof. Suppose, on the contrary, that the series
∑∞

n=0 anzn converges for some
point z1 with |z1| > |z0|. Then, by Theorem 6.38,

∑∞
n=0 anzn converges abso-

lutely for |z| < |z1|. In particular, this would imply the absolute convergence
of

∑∞
n=0 anzn

0 , contradicting our assumption.

Corollary 6.40. If
∑∞

n=0 anzn converges for all real values of z, then the
series also converges for all complex values.

Proof. Suppose
∑∞

n=0 anzn
0 diverges for some complex value z0. By Corollary

6.39,
∑∞

n=0 anRn diverges for R > |z0|, contradicting our assumption.



6.3 Maclaurin and Taylor Series 175

Theorem 6.38 can be used to determine precise bounds for the region in
which a power series converges.

Theorem 6.41. To every power series
∑∞

n=0 anzn, there corresponds an R,
0 ≤ R ≤ ∞, for which the series

(i) converges absolutely in |z| < R if 0 < R ≤ ∞
(ii) converges uniformly in |z| ≤ r < R if 0 < R ≤ ∞
(iii) diverges for |z| > R if 0 ≤ R < ∞.

Proof. For z = 0, the series becomes a0 and hence, the power series converges
at the origin. If the series diverges for all nonzero values of z, then clearly
R = 0. If the series converges for some nonzero value, we let

S =

{
r :

∞∑
n=0

|an| |z|n converges for |z| < r

}
,

and define

R =
{

lubS if S is bounded,
∞ if S is unbounded.

We wish to show that R, so chosen, satisfies conditions (i), (ii), and (iii).
For any point z0, |z0| < R, we can find a real number ρ such that

|z0| < ρ < R. (6.14)

The number ρ must be in S; for otherwise, R could not be its least upper
bound. Hence, by (6.14) and the definition of set S, the series

∑∞
n=0 |an| |z0|n

converges. Since z0 was arbitrary, (i) is proved.
Next, if R > 0, choose r so that 0 < r < R. Then there exists z0 such that

r < |z0| < R and the series
∑∞

n=1 |anzn
0 | is convergent (if R = ∞, this works

for any r). In particular, the nth term |anzn
0 | is bounded, say by a number K.

Now for |z| ≤ r,

|anzn| ≤ |an|rn = |anzn
0 |

(
r

|z0|

)n

≤ K

(
r

|z0|

)n

= KMn.

Since
∑

Mn is a convergent geometric series, the Weierstrass M -test applies,
and the series

∑
anzn converges uniformly for |z| ≤ r. This proves (ii).

Finally, the convergence of the series at some point z1, |z1| > R, would,
according to Theorem 6.38, imply absolute convergence for |z| < |z1|. But
then |z1| would be an element of S; this would contradict the assumption
that R is an upper bound for the set S. This proves (iii).

The number R, defined by Theorem 6.41, is called the radius of convergence
and the circle |z| = R is often referred to as the circle of convergence. If R
is the radius of convergence of a series, then the disk |z| < R is called the
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disk/domain of convergence of the corresponding power series. The radius of
convergence depends only on the tail of the series. If we alter a finite number
of coefficients an of the series, the radius of convergence remains unchanged.
Further, a power series always converges inside and diverges outside the circle
|z| = R. But there is no general principle regarding its behavior on the circle.
Therefore, if it is required to find the convergence of a power series on its
circle of convergence, then this has to be investigated separately because it
may converge at all, none, or some of the points. We illustrate the last fact
by the following examples:

Examples 6.42. (i) The geometric series
∑∞

n=0 zn converges for |z| < 1
and diverges everywhere on |z| = 1, its circle of convergence. Note that
the series is not uniformly convergent on the open disk |z| < 1.

(ii) The series
∑∞

n=1 zn/n converges at z = −1 and diverges at z = 1.
Therefore, its radius of convergence must be R = 1 (Why?).

(iii) The series
∑∞

n=1(z
n/n2) converges absolutely (and uniformly) for |z| ≤

1. This follows from the Weierstrass M -test with majorants Mn = 1/n2.
If z = 1 + ε > 1, then (1 + ε)n/n2 → ∞ as n → ∞. Hence, the series
does not converge for |z| > 1, and the radius of convergence of the series∑∞

n=1(z
n/n2) is R = 1.

(iv) The series
∑∞

n=1 nnzn cannot converge for any nonzero complex values
because |nz|n = |z|nnn → ∞ (z �= 0). Therefore, R = 0.

(v) The series
∑∞

n=1(z
n/nn) converges everywhere. To see this, choose z =

z0. Then for N > |z0|,
∞∑

n=N

∣∣∣∣ zn
0

nn

∣∣∣∣ <
∞∑

n=N

∣∣∣z0

N

∣∣∣n =
|z0/N |N

1 − |z0/N | ,

and the absolute convergence of
∑∞

n=1(z
n
0 /nn) follows. Since z0 was

arbitrary, R = ∞. By Theorem 6.41, the series converges uniformly on
all compact subsets of the plane. •

Example 6.43. Let us discuss the convergence of the series

∞∑
n=−∞

3−|n|z2n.

According to the discussion on geometric series, we may rewrite the given
series as

∞∑
n=−∞

3−|n|z2n =
∞∑

n=0

3−nz2n +
−1∑

n=−∞
3nz2n

=
∞∑

n=0

(
z2

3

)n

+
∞∑

n=1

(3z2)−n.
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Note that the first series on the right converges when |z|2 < 3, i.e., when
|z| <

√
3 and that it diverges for all z with |z| ≥

√
3. Similarly, the second

series on the right converges when |3z2| > 1, i.e., when |z| > 1/
√

3 and that
it diverges for |z| ≤ 1/

√
3. It follows that

∞∑
n=−∞

3−|n|z2n =
1

1 − z2/3
+

1/(3z2)
1 − (1/3z2)

=
8z2

(3 − z2)(3z2 − 1)

for 1/
√

3 < |z| <
√

3, whereas the series diverges for all remaining z. •
More generally, Theorem 6.41 shows that a power series

∑∞
n=0 an(z − b)n

either converges absolutely in C or only at the origin or else there exists an
R > 0, for which the series converges absolutely in |z − b| < R and diverges
for |z − b| > R. If 0 ≤ r < R (if r > 0 for R = ∞), then the series converges
uniformly in |z − b| ≤ r.

Thus far the radii of convergence for different power series have been deter-
mined only by the sometimes cumbersome method of testing distinct points
for convergence and divergence and applying Theorem 6.38. But a power series
is defined by its coefficients, and it is these coefficients alone that determine
its radius of convergence.

Theorem 6.44. (Cauchy–Hadamard) The power series
∑∞

n=0 anzn has ra-
dius of convergence R, where 1/R = lim supn→∞ |an|1/n (Here we observe the
conventions 1/0 = ∞ and 1/∞ = 0).

Proof. For any point z0 �= 0, we have

lim sup
n→∞

|anzn
0 |1/n = lim sup

n→∞
|an|1/n|z0| =

1
R
|z0|.

According to Theorem 6.13, the series
∑∞

n=0 anzn
0 converges absolutely when

|z0| < R and diverges when |z0| > R. In view of Theorem 6.41, the radius of
convergence is R.

When R = ∞, the series converges everywhere; and when R = 0, the series
converges only at z = 0.

Most often the following result suffices to examine the convergence prop-
erties of the power series.

Corollary 6.45. The radius of convergence R of the power series
∑∞

n=0 anzn

is determined by

(a)
1
R

= lim
n→∞ |an|1/n (b)

1
R

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
provided these limits exist.
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Examples 6.46. (i) Consider
∑∞

n=1 anzn, 4an = n/(4n2 + 1). Then the
ratio test given by Corollary 6.16 is applicable, as an �= 0 for each
n ∈ N. We have∣∣∣∣an+1

an

∣∣∣∣ =
n + 1

4(n + 1)2 + 1
4n2 + 1

n
→ 1 as n → ∞.

So, the series converges for |z| < 1 and diverges for |z| > 1.
(ii) Consider

∑∞
n=0

1
(3+i)n z3n. Note that the ratio test is not directly appli-

cable. However, we may think of this as a series in a new variable z3

rather than in z: ∞∑
n=0

1
(3 + i)n

wn, w = z3.

Now, we can apply the ratio test to this new series. It follows that

1
R

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3 + i)n

(3 + i)n+1

∣∣∣∣ =
1√
10

, i.e., R =
√

10

and so the new series converges for |w| <
√

10 and diverges for |w| >√
10. This is equivalent to saying that the original series converges for

|z| < 101/6 and diverges for |z| > 101/6.
(iii) Consider

∑∞
n=1

n+1
n! zn3

. Again the ratio test is not applicable. But we
may fix z �= 0 and let

an =
n + 1

n!
zn3

.

Then,

an+1

an
=

(n + 2)z(n+1)3

(n + 1)!
× n!

(n + 1)zn3 =
(n + 2)
(n + 1)2

z(n+1)3−n3

and so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 2)
(n + 1)2

|z|3n(n+1)+1

which is less than 1 provided |z| < 1, showing that the given series
converges for |z| < 1 and diverges |z| > 1.

(iv) Finally, we consider
∑∞

n=0 anzn, where

an =
{

i2n for n even
−3n for n odd .

Then

|an|1/n =
{

2 for n even
3 for n odd,

showing that |an|1/n oscillates finitely. So, by Theorem 6.44 we see that

1
R

= lim sup
n→∞

|an|1/n = 3, i.e., R = 1/3,

and the series converges for |z| < 1/3 and diverges for |z| > 1/3. •
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Example 6.47. Suppose that the power series
∑∞

n=0 anzn has a positive ra-
dius of convergence. Then the series

∑∞
n=1

an

nn zn is entire.
To see this, let R > 0 be the radius of convergence of

∑∞
n=1 anzn. Then∑∞

n=0 anrn converges, where 0 < r < R. In particular, {anrn} is a bounded
sequence. Thus, there exist an M such that |anrn| ≤ M for all n ≥ 0. Now

∣∣∣an

nn

∣∣∣1/n

≤ M1/n/r

n
→ 0 as n → ∞

which, according to the root test, shows that
∑∞

n=1 ann−nzn is entire.

Example 6.48. It is easier to show that the radius of convergence of
∑∞

n=0(5+
(−1)n)zn is 1. Indeed, we note that

an = 5 + (−1)n =
{

4 if n is odd
6 if n is even.

Clearly, the ratio test is not applicable. On the other hand, as |z|1/n → 1 for
z �= 0, it follows that

1
R

= lim sup
n→∞

|an|1/n = 1

which gives R = 1. How can we find the sum f(z) of the given series? Rewrite
the given series as

f(z) = 5
∞∑

n=0

zn +
∞∑

n=0

(−1)nzn.

Note that both the series on the right are known to converge for |z| < 1, and
diverge for |z| ≥ 1. The sum is then given by

f(z) =
5

1 − z
+

1
1 + z

=
2(3 + 2z)
1 − z2

. •
Example 6.49. Let us find the radius of convergence of the series

∞∑
n=0

sin(nπ/4)zn

and also its sum f(z). To do this, we set an = sin(nπ/4). As |an| ≤ 1 for all
n ≥ 0, we have

1
R

= lim sup
n→∞

|an|1/n ≤ 1, i.e., R ≥ 1.

On the other hand an = ±1 for infinitely many n which shows that 1/R ≥ 1,
i.e. R ≤ 1. Hence, R = 1. Note that

a2(4k+1) = sin(2kπ + π/2) = 1 and a2(4k+3) = sin(2kπ + 3π/2) = −1.

To find the sum, we easily compute that
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an =

⎧⎪⎪⎨
⎪⎪⎩

0 if n = 4k

(−1)k/
√

2 if n = 4k + 1
(−1)k if n = 4k + 2

(−1)k/
√

2 if n = 4k + 3

, k ∈ N0,

and therefore, we may rewrite the given series in the form

f(z) =
z√
2

+ z2 +
z3

√
2

+ 0 − z5

√
2
− z6 − z7

√
2
− 0 + · · ·

=
(

z√
2

+ z2 +
z3

√
2

)
(1 − z4 + z8 − · · · )

=
z(1 +

√
2z + z2)√

2(1 + z4)
. •

Suppose the power series
∑∞

n=0 anzn has radius of convergence R. We wish
to characterize as fully as possible the behavior of the function f(z), defined
by the power series, at points interior to its circle of convergence. Implicit
in our work is the continuity of f(z) for |z| < R. To show continuity at an
arbitrary point z0, |z0| < R, we note (by Theorem 6.41) that the sequence
Sn(z) =

∑n
k=0 akzk converges uniformly to f(z) in the disk |z| ≤ r = |z0|.

Since Sn(z) is continuous at z = z0 for every n, Theorem 6.26 may be applied
to establish continuity of the limit function f(z) at z = z0.

The differentiability of f(z) is not so straightforward. We might expect the
derivatives of a sequence of uniformly convergent differentiable functions to
converge to a differentiable function. However, consider the sequence {fn(z)},
where

fn(z) = (sinnz)/
√

n.

Although {fn(z)} converges uniformly on the real line, the sequence {f ′
n(z)},

where f ′
n(z) =

√
n cos nz, converges for no real values.

Fortunately, no such pathological behavior can occur for the sequence of
partial sums of a power series. In a sense, a power series may be thought of as
a polynomial of infinite degree; indeed, a polynomial can be defined as a power
series in which all but a finite number of coefficients are zero. The derivative
of a polynomial Pn(z) =

∑n
k=0 akzk is

P ′
n(z) =

n∑
k=1

kakzk−1.

We will prove a similar result for power series. But first we need the following:

Lemma 6.50. The two power series
∞∑

n=0

anzn and
∞∑

n=1

nanzn

have the same radius of convergence.
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Proof. Using properties of the limit superior (Exercise 6.19(7)), we have

lim sup
n→∞

|nan|1/n = lim
n→∞n1/n lim sup

n→∞
|an|1/n = lim sup

n→∞
|an|1/n.

The result now follows from Theorem 6.44.

Theorem 6.51. If a function f(z) is the pointwise limit of a power series∑∞
n=0 anzn in |z| < R, then f(z) is analytic for |z| < R, with

f ′(z) =
∞∑

n=1

nanzn−1.

Proof. Given z0, |z0| < R, we will show that∣∣∣∣∣f(z) − f(z0)
z − z0

−
∞∑

n=1

nanzn−1
0

∣∣∣∣∣ < ε

whenever |z − z0| < δ = δ(ε, z0) (see Fig. 6.2).

Figure 6.2.

For z sufficiently close to z0, there is a real number ρ satisfying the in-
equalities

|z0| ≤ ρ, |z| ≤ ρ (ρ < R). (6.15)

For any integer N , we write

PN (z) =
N∑

n=0

anzn
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so that P ′
N (z) =

∑N
n=1 nanzn−1

0 . Therefore, we have∣∣∣∣∣f(z) − f(z0)
z − z0

−
∞∑

n=1

nanzn−1
0

∣∣∣∣∣ (6.16)

=

∣∣∣∣∣PN (z) − PN (z0)
z − z0

− P ′
N (z0) +

∞∑
n=N+1

an

(
zn − zn

0

z − z0
− nzn−1

0

)∣∣∣∣∣
≤

∣∣∣∣PN (z) − PN (z0)
z − z0

− P ′
N (z0)

∣∣∣∣ +

∣∣∣∣∣
∞∑

n=N+1

an

(
zn − zn

0

z − z0
− nzn−1

0

)∣∣∣∣∣ .
Denote the last two expressions by A1 and A2, respectively. We shall first

choose N large enough so that A2 < ε/2, and then choose δ small enough so
that A1 < ε/2. From (6.15),∣∣∣∣zn − zn

0

z − z0
− nzn−1

0

∣∣∣∣ ≤ |zn−1 + zn−2z0 + · · · + zn−1
0 | + n|z0|n−1 (6.17)

≤ |z|n−1 + |z|n−2|z0| + · · · + |z0|n−1 + n|z0|n−1

≤ nρn−1 + nρn−1 = 2nρn−1.

According to the lemma,
∑∞

n=1 n|an|ρn−1 converges and, by the Cauchy cri-
terion, an integer N may be found such that

∞∑
n=N+1

n|an|ρn−1 <
ε

4
, i.e., A2 < ε/2. (6.18)

The inequality

A1 <
ε

2
for |z − z0| < δ (6.19)

is a consequence of the differentiability of the polynomial PN (z) at z = z0. If
we combine (6.18) and (6.19), the result follows from (6.16).

Remark 6.52. A power series may always be written as a polynomial plus a
“tail”. The essence of this proof consisted of showing the tail to be inconse-
quential. •
Remark 6.53. Theorem 6.51 says that every function defined by its power
series is analytic inside its radius of convergence. In Chapter 8, the converse
will also be proved. That is, every function analytic in a disk may be expressed
as a power series. •

An examination of Theorem 6.51 reveals that much more has been proved
than was originally intended. The power series f(z) =

∑∞
n=0 anzn was shown

to have derivative
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f ′(z) =
∞∑

n=1

nanzn−1

which, itself, is a power series having the same radius of convergence as f(z).
Thus, Theorem 6.51 may be applied repeatedly to obtain

f (k)(z) =
∞∑

n=k

n(n − 1) · · · (n − (k − 1))anzn−k

= k!ak +
(k + 1)!

1!
ak+1z +

(k + 2)!
2!

ak+2z
2 + · · · , (6.20)

which is valid inside the circle of convergence of f(z). Setting z = 0 in (6.20)
we see that the coefficients ak are related to the sum function f(z) of the
power series through the expression

f (k)(0) = k!ak, i.e., ak =
f (k)(0)

k!
(6.21)

for k = 0, 1, 2, . . . . Here we have used the conventions f (0)(z) = f(z) and
0! = 1. We sum up these results as

Theorem 6.54. If a function f(z) is the pointwise limit of a power series
in some neighborhood of the origin, then f(z) has derivatives of all orders
at each point interior to the circle of convergence of f(z). Furthermore, the
coefficients of the power series are uniquely determined and are related to the
derivatives of f(z) at the origin by (6.21).

The representation

f(z) =
∞∑

n=0

f (n)(0)
n!

zn

is called the Maclaurin series expansion of f(z).

Example 6.55. Let us sum the series
∑∞

n=1 n(n + 3)zn for |z| < 1. To do
this, for z �= 0, the geometric series shows that

z3

1 − z
=

∞∑
n=0

zn+3

from which one obtains that

1
z2

(
z3

1 − z

)′
=

∞∑
n=0

(n + 3)zn.

Differentiating the left-hand side and then multiplying the resulting expression
by z would yield the desired sum. •
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All of our results on power series may easily be reworded to accommodate
expansions in powers of z − b, where b is any complex number. For instance,
the series

∑∞
n=0 an(z − b)n converges absolutely to an analytic function f(z)

inside the circle |z − b| = R, where R−1 = lim supn→∞ |an|1/n. Moreover, the
Taylor series expansion

f(z) =
∞∑

n=0

f (n)(b)
n!

(z − b)n

is valid for |z − b| < R.

Theorem 6.56. (see also Theorem 8.44) Let f(z) =
∑∞

n=0 anzn be a power
series with positive radius of convergence and {zk}k≥1 a sequence which con-
verges to zero such that zk �= 0 for all k ∈ N. Further assume that f(zk) = 0
for k ∈ N. Then an = 0 for all n ∈ N0.

Proof. As f is analytic at z = 0, f is continuous at z = 0. We have

zk → 0 ⇒ f(zk) → f(0) ⇒ f(0) = 0.

Next consider the function f1(z) =
∑∞

n=1 anzn−1 which has the same radius
of convergence as f , and

0 = f(zk) = f1(zk)zk, k ∈ N.

Since zk �= 0, f1(zk) = 0 for k ∈ N. Hence a1 = f1(0) = 0. Continuing this
process we obtain the desired result.

Questions 6.57.

1. Suppose a power series converges at z = z0 and diverges at z = z1.
What is the relationship between z0 and z1?

2. Suppose a power series converges at all the positive integers. What kind
of function does it represent?

3. Can a power series
∑∞

n=0 an(z − 5i)n converge at z = 0 and diverge at
z = 1 + 7i?

4. Is the set S, defined in Theorem 6.41, a closed set?
5. When will the regions of absolute and uniform convergence of a power

series coincide?
6. How do the convergence properties of

∑∞
n=0 anzn and

∑∞
n=0 nanzn com-

pare?
7. If

∑∞
n=0 an converges, what can be said about the radius of convergence

of
∑∞

n=0 anzn?
8. In what ways do power series having radius of convergence R = 0 or

R = ∞ differ from other power series?
9. Suppose {fn} is a sequence of differentiable functions, and {f ′

n} con-
verges uniformly on a set E to a differentiable function. Must {fn}
converge on E?
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10. What can be said about the sum and product of power series?
11. What analytic functions can be shown to have power series representa-

tions?
12. Are the theorems in this section valid for real power series?

Exercises 6.58.

1. Suppose
∑∞

n=0 anzn has radius of convergence R. Show that the se-
quence {anzn

0 } is unbounded if |z0| > R.
2. (a) If

∑∞
n=0 anzn

1 converges and
∑∞

n=0 anzn
2 diverges, with |z1| = |z2|,

show that
∑∞

n=0 anzn has radius of convergence R = |z1|.
(b) If

∑∞
n=0 an converges and

∑∞
n=0 |an| diverges, show that the series∑∞

n=0 anzn has radius of convergence R = 1.
3. Suppose |an| is a decreasing sequence. Show that the radius of conver-

gence of
∑∞

n=0 anzn is at least 1.
4. Suppose

∑∞
n=0 anzn converges at an unbounded sequence of points.

Show that the power series converges everywhere.
5. Suppose {an} is a sequence of integers. Prove that

∑∞
n=0 anzn is either

an entire function or has radius of convergence at most one.
6. Show that a power series converges uniformly on all compact subsets

interior to its circle of convergence.
7. Suppose limn→∞ |an/an+1| = R. Show that

∑∞
n=0 anzn has radius of

convergence R.
8. Show that the radius of convergence of any power series

∑∞
n=0 anzn is

given by R = lim infn→∞ |an|−1/n.
9. Show, for any integer k, that

∑∞
n=1(n

k/nln n)zn has radius of conver-
gence R = 1.

10. Find the radius of convergence for

(a)
∞∑

n=1

nk

an
zn (b)

∞∑
n=1

(nk + an)zn (c)
∞∑

n=1

in − 1
n

zn

(d)
∞∑

n=1

(
1 +

1
n

)n2

zn (e)
∞∑

n=0

n2 + 5n + 3in

2n + 1
zn (f)

∞∑
n=1

(n!)2

(2n)!
zn

(g)
∞∑

n=1

n1/n(z + i)n (h)
∞∑

n=1

(lnn)nzn3
(i)

∞∑
n=1

n3(z + 1)3
n

(j)
∞∑

n=1

n!zn (k)
∞∑

n=0

n!zn! (l)
∞∑

n=1

n!
nn

zn.

11. Find the radius of convergence for

(a)
∞∑

n=1

z2n

4nnk
(b)

∞∑
n=1

3n

n2 + 4n
z2n (c)

∞∑
n=0

zn

2n2

(d)
∞∑

n=0

zn2

2n
(e)

∞∑
n=0

2n + 3n

4n + 5n
zn (f)

∞∑
n=0

2nzn2

(g)
∞∑

n=0

cos(nπ/6)zn (h)
∞∑

n=0

sin(nπ/16)zn.
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12. Suppose {an} is a complex sequence whose partial sums
∑n

i=1 ai are
bounded. If {bn} is a real sequence that is monotonically decreasing to
0, show that

∑∞
n=1 anbn converges.

13. (a) Show that
∑∞

n=1(z
n/n) converges everywhere on the circle |z| = 1

except z = 1.
(b) Show, for |z1| = 1, that

∑∞
n=1(1/n)(z/z1)n converges everywhere

on the unit circle except z = z1.
(c) Suppose |z1| = |z2| = · · · = |zp| = 1. Show that

∞∑
n=1

1
n

(
1
zn
1

+ · · · +
1
zn

p

)
zn

converges everywhere on the unit circle except z1, z2, . . . , zp.
14. Write Taylor expansions for the polynomial P (z) = z3 + 3z2 − 2z + 1 in

powers of
(a) z − 1 (b) z + 2 (c) z − i.

15. Show that the series ∞∑
n=0

(−1)nz2n

8n

converges for |z| < 2
√

2. Find its sum.
16. Suppose that an �= 0 for all n ∈ N. If R is the radius of convergence of

both the series ∞∑
n=1

anzn and
∞∑

n=1

zn

an
,

then show that R = 1.
17. Sum the series

∑∞
n=0 cos(nπ/3)zn.

6.4 Operations on Power Series

Our study of power series has revolved around the following three questions:

(i) For what values of z does
∑∞

n=0 an(z − b)n converge?
(ii) What properties may be attributed to f(z) =

∑∞
n=0 an(z−b)n at points

where the series converges?
(iii) Under what conditions may a function f(z) be represented by a power

series in some neighborhood of a point?

The first two questions are almost completely solved. The series

∞∑
n=0

an(z − b)n

either converges everywhere, only at z = b, or there exists a circle for which
the series converges absolutely inside and diverges outside. The function
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f(z) =
∞∑

n=0

an(z − b)n

is analytic with derivatives of all orders inside the circle of convergence. Only
its behavior on the circle remains a mystery.

The third question has not yet been properly dealt with. We know that
f(z) cannot be represented by a power series in a neighborhood of a point un-
less it has derivatives of all orders at each point in the neighborhood. Further-
more, if f(z) does have a power series representation in some neighborhood
of z = b, then that representation is unique, and its coefficients are related to
the derivatives at z = b by

f(z) =
∞∑

n=0

f (n)(b)
n!

(z − b)n.

But we still have no criteria that will guarantee a power series development.
Consider, for example, the function

f(z) =
∞∑

n=0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+ · · · .

By the ratio test, the radius of convergence is ∞, and so f(z) is entire. Al-
ternatively, in view of Theorem 6.44, it suffices to show that (n!)1/n → ∞.
Beginning with the inequality

n! ≥ n(n − 1) · · ·
(
n − n

2

)
≥

(n

2

)n/2

,

we take nth roots of both sides to obtain

(n!)1/n ≥
(n

2

)1/2

→ ∞.

Thus, f(z) is analytic everywhere. Moreover, f(0) = 1 and, by Theorem 6.51,
f ′(z) = f(z) for all z.

We would like very much, at this point, to say that f(z) = ez. In fact, if
ez does have a power series representation, then

f(z) = ez =
∞∑

n=0

f (n)(0)
n!

zn =
∞∑

n=0

zn

n!
. (6.22)

To give us even more faith in the truth of (6.22), note that the identity

ex =
∞∑

n=0

xn

n!

is valid for all real x. This is proved in elementary calculus by use of Taylor’s
formula with remainder [T]. That is,
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f(x) = ex =
n−1∑
k=0

f (k)(0)
k!

xk + Rn(x),

where Rn(x), defined in terms of a real integral, approaches zero as n ap-
proaches infinity.

The proof of (6.22) for complex z will be postponed until the theory of
complex integration has been developed, but even the most impatient reader
will find it worth the wait. Not only will we prove that all the familiar real
power series identities like

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+ · · · ,

sinx =
∞∑

n=1

(−1)n+1x2n−1

(2n − 1)!
= x − x3

3!
+

x5

5!
− · · · ,

cos x =
∞∑

n=0

(−1)nx2n

(2n)!
= 1 − x2

2!
+

x4

4!
− · · ·

remain valid in the complex plane, but also that there is a converse to Theorem
6.51; namely, that every analytic function admits a power-series expansion. In
particular, if f(z) is an entire function, then its Taylor series representation

f(z) =
∞∑

n=0

f (n)(b)
n!

(z − b)n

is valid for all complex b and z.
This becomes even more striking in view of the absence of a real variable

analog.

Example 6.59. We remark that the function f(x) = x|x| is differentiable for
all real x, but cannot be expanded in a Maclaurin (real) series because f ′′(0)
does not exist. •
Example 6.60. The function f(x) = 1/(1 + x2) has derivatives of all orders
for all real x, although the Maclaurin expansion

f(x) =
∞∑

n=0

f (n)(0)
n!

xn = 1 − x2 + x4 − x6 + · · ·

is valid only in the real interval (−1, 1). There appears to be nothing in the
nature of the function to account for this restriction. But replacing x by the
complex variable z, we see that the function f(z) = 1/(1 + z2) is not analytic
at z = ±i. This prevents a Maclaurin series from converging outside the circle
|z| = 1. In particular, for real values of z the series cannot converge outside
the real interval [−1, 1]. •
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Example 6.61. The function

f(x) =
{

e−1/x2
if x �= 0,

0 if x = 0

has derivatives of all orders for all real values. Since f (n)(0) = 0 for every
integer n, we have

∑∞
n=0(f

(n)(0)/n!)xn ≡ 0. Hence, the Maclaurin series
represents the function only at the origin. •

Returning, once again, to functions of a complex variable, the sum of two
polynomials of degree n is a polynomial of degree at most n and is formed by
adding coefficients termwise. That is,

n∑
k=0

akzk +
n∑

k=0

bkzk =
n∑

k=0

(ak + bk)zk.

The product of two polynomials of degree n is a polynomial of degree 2n, but
the relationship between coefficients is not as simple. We have

(a0 + a1z + a2z
2 + · · · + anzn)(b0 + b1z + b2z

2 + · · · + bnzn)
= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2

+ · · · + anbnz2n.

More concisely,(
n∑

k=0

akzk

)(
n∑

k=0

bkzk

)
=

2n∑
k=0

ckzk, ck =
k∑

m=0

am bk−m.

If two functions are known to have power series representations, then infor-
mation about their sum and product can be obtained.

Theorem 6.62. Suppose f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn have
radii of convergence R1 and R2, respectively. Then f(z) + g(z) and f(z)g(z)
have power series representations whose radius of convergence is at least R =
min{R1, R2}.

Proof. Set Sn(z) =
∑n

k=0 akzk and Tn(z) =
∑n

k=0 bkzk. Then

Sn(z) + Tn(z) =
n∑

k=0

(ak + bk)zk and Sn(z)Tn(z) =
2n∑

k=0

ckzk,

where ck =
∑k

m=0 ambk−m. For any point z0, |z0| < R, we have

lim
n→∞Sn(z0) = f(z0) and lim

n→∞Tn(z0) = g(z0).

Hence
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lim
n→∞(Sn(z0) + Tn(z0)) = f(z0) + g(z0) =

∞∑
n=0

(an + bn)zn
0

and

lim
n→∞Sn(z0)Tn(z0) = f(z0)g(z0) =

∞∑
n=0

cnzn
0 .

Since z0 was arbitrary, both sides converge for |z| < R.

Remark 6.63. The radii of convergence for
∑∞

n=0(an+bn)zn and
∑∞

n=0 cnzn

may actually be greater than min{R1, R2}. If an ≡ 1, bn ≡ −1, then R1 =
R2 = 1; but

∞∑
n=0

(an + bn)zn =
∞∑

n=0

(1 − 1)zn ≡ 0,

and the series converges for all values of z. If

an =
{

2 if n = 0
2n if n ≥ 1,

and bn =
{
−1 if n = 0

1 if n ≥ 1,

then R1 = 1
2 and R2 = 1. However, c0 = a0b0 = −2 and for n ≥ 1,

cn =
n∑

k=0

akbn−k = a0bn + anb0 +
n−1∑
k=1

akbn−k

= 2 − 2n +
n−1∑
k=1

2k

= 2 − 2n +
2 − 2n

1 − 2
= 0.

Therefore,
∑∞

n=0 cnzn = c0 = −2, and the series converges for all z. Note that

f(z) = 2 +
∞∑

n=1

2nzn = 2 +
2z

1 − 2z
=

2(1 − z)
1 − 2z

(
|z| <

1
2

)

and

g(z) = −1 +
∞∑

n=1

zn = −1 +
z

1 − z
= −1 − 2z

1 − z
(|z| < 1). •

The only function, essentially, whose Maclaurin expansion we know as yet
in “closed form” is the geometric series

f(z) =
1

1 − z
=

∞∑
n=0

zn (|z| < 1).

For any nonzero complex number a, this leads to the identity
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1
a − z

=
1

a(1 − z/a)
=

1
a

∞∑
n=0

(z

a

)n

=
∞∑

n=0

1
an+1

zn (|z| < |a|).

Also, for any two distinct complex numbers a and b, we have

1
(z − a)(z − b)

=
1

a − b

(
1

z − a
− 1

z − b

)

=
1

a − b

[ ∞∑
n=0

(
1

bn+1
− 1

an+1

)
zn

]

valid in the region

|z| < R = min{|a|, |b|}. (6.23)

A Maclaurin expansion for 1/(1− z)2 can be found by two different methods.

Method 1: Setting an ≡ bn ≡ 1 in the proof of Theorem 6.54, we have

1
(1 − z)2

=
1

1 − z
· 1
1 − z

=

( ∞∑
n=0

zn

)( ∞∑
n=0

zn

)

=
∞∑

n=0

(n + 1)zn (|z| < 1).

Method 2: By Theorem 6.51 and the geometric series defined above,

f ′(z) =
1

(1 − z)2
=

∞∑
n=1

nzn−1 (|z| < 1). (6.24)

It is usually much easier to decide whether or not a given series converges than
it is to find the value of a known convergent series. For instance, any student
of elementary calculus can show that the series

∑∞
n=0(1/n3) converges, but

the finest mathematicians in the world have not yet developed methods to
find its sum. However, all is not lost; the closed form of the geometric series
does enable us to find the value of many series.

Let us find the sum of
∑∞

n=1 n/2n. To do this, by (6.24), we have

zf ′(z) =
z

(1 − z)2
=

∞∑
n=1

nzn (|z| < 1). (6.25)

Letting z = 1
2 in (6.25), we obtain

∞∑
n=1

n

2n
=

1
2

(1 − 1
2 )2

= 2.
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It is interesting to note that
∑∞

n=0 2−n =
∑∞

n=0 n2−n. The apparent paradox
may be resolved by noting that the first term on the right vanishes.

Example 6.64. Let us find the sum of
∑∞

n=1(n
2/3n). Differentiating (6.25)

and multiplying by z, we have

z + z2

(1 − z)3
=

∞∑
n=1

n2zn (|z| < 1). (6.26)

Setting z = 1
3 in (6.26) leads to

∞∑
n=1

n2

3n
=

( 1
3 ) + (1

3 )2

(1 − 1
3 )3

=
3
2
. •

The method employed in these examples may be used to evaluate any
series of the form

∞∑
n=1

nk

zn
0

(k a positive integer, |z0| > 1).

It is sometimes possible to obtain, in closed form, a power series whose coef-
ficients are defined recursively.

Example 6.65. The Fibonacci sequence is defined by

an+2 = an+1 + an for all n ≥ 0,

with a0 = 0 and a1 = 1. Suppose f(z) = z +
∑∞

n=2 anzn. Then

f(z) = z +
∞∑

n=0

an+2z
n+2

= z +
∞∑

n=0

(an+1 + an)zn+2

= z + z

∞∑
n=0

an+1z
n+1 + z2

∞∑
n=0

anzn

= z + zf(z) + z2f(z).

Solving, we obtain
f(z) =

z

1 − z − z2
.

The above manipulations are valid only at points where the series converges.
The roots of the denominator of f(z) are z = (1±

√
5)/2. By (6.23), the radius

of convergence of f(z) is seen to be (
√

5 − 1)/2.
The geometric series may also be manipulated to obtain Taylor series

expansions. For example, we know that for any complex number b, b �= 1,
the identity
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1
1 − z

=
1

(1 − b)[1 − (z − b)/(1 − b)]
=

∞∑
n=0

1
(1 − b)n+1

(z − b)n

is valid whenever |z − b| < |1 − b|. Hence, f(z) = 1/(1 − z) has a Taylor
expansion about every point except z = 1. The reader may wish to check that

f (n)(b)
n!

=
1

(1 − b)n+1
for every n. •

Questions 6.66.

1. What are the differences between real and complex power series?
2. Does the quotient of two power series have a power series representation?
3. Suppose f(z) and g(z) have power series representations. What can be

said about f(g(z))?
4. Suppose f(z) has a Maclaurin expansion with radius of convergence R.

Can f(z) be analytic at a point z0, |z0| > R? Can f(z) be analytic
everywhere on the circle |z| = R?

5. Suppose a function is known to have a power series representation. What
operations may then be used to evaluate specific infinite series?

6. If an �= 0, how do the radii of convergence of the series
∑∞

n=0 anzn and∑∞
n=0(1/an)zn compare?

7. If a function has a Taylor expansion about two distinct points, how will
the radii of convergence of the two power series compare?

8. What can be said about power series representations for rational func-
tions?

9. Can a power series converge in an open disk |z| < R without being
absolutely convergent there? What about a closed disk |z| ≤ R?

Exercises 6.67.

1. Suppose
∑∞

n=0 anzn has radius of convergence R1, 0 < R1 < ∞, and∑∞
n=0 bnzn has radius of convergence R2, 0 < R2 < ∞. Show that

(a)
∑∞

n=0 anbnzn has radius of convergence at least R1R2.
(b)

∑∞
n=0(an/bn)zn (bn �= 0) has radius of convergence at most R1/R2.

Give examples to show that inequality may hold in (a) and (b).
2. Suppose

∑∞
n=0 anzn has radius of convergence R, 0 < R < ∞. Find the

radii of convergence for

(a)
∞∑

n=0

annkzn (b)
∞∑

n=0

an

nk
zn (c)

∞∑
n=0

an

n!
zn (d)

∞∑
n=0

ann!zn.

Which of these answers are different if R = 0 or R = ∞?
3. Derive the power series of (1 − z)−4 (about a �= 1) from the geometric

series (about a).
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4. Suppose
∑∞

n=0 anzn has radius of convergence R. Give examples in
which

∑∞
n=0 anzkn (k a positive integer) and

∑∞
n=0 anzn2

have radius
of convergence R, and radius of convergence greater than R.

5. (a) Suppose f(z) can be expanded in a Taylor series about the point
z = a. Show that f(z) is entire if |f (n)(a)| ≤ M for some constant
M and for every integer n.

(b) Show that f(z) is entire if |f (n)(a)| ≤ nk for some integer k and all
n.

6. Find the sum of the following series.

(a)
∞∑

n=1

n2 + 2n − 1
3n

(b)
∞∑

n=2

n(3n − 2n)
6n

(c)
∞∑

n=1

5in

(1 + i)n
.

7. Find the radius of convergence of the series
∑∞

n=1

(
1

n2 + (−3)n
)
zn.

8. Suppose that an + Aan−1 + Ban−2 = 0 (n = 2, 3, 4, . . . ). Show that

∞∑
n=0

anzn =
a0 + (a1 + a0A)z

1 + Az + Bz2

at all points where the power series converges. What is the radius of
convergence?

9. For the Fibonacci sequence defined by an+2 = an+1 + an, with a0 = 0
and a1 = 1, show that an ≤

(
2/(

√
5 − 1)

)n
for every n.

10. Suppose a, b, and c are distinct nonzero complex numbers. Find a Taylor
series expansion for f(z) = 1/(z − a)(z − b) about the point z = c, and
determine its radius of convergence.

11. Assume that f is analytic for |z| < r for some r > 0 and f satisfies the
functional equation f(2z) = (f(z))2 for all z sufficiently close to zero
(which is to make sure that both z and 2z lie in some disk about 0 that
is contained in Δr). Show that f can be extended to an entire function.
Determine all such entire functions explicitly.
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Complex Integration and Cauchy’s Theorem

One of the most important theorems in calculus is properly named the fun-
damental theorem of integral calculus. On the one hand it relates integration
to differentiation, and on the other hand it gives a method for evaluating
integrals. In this chapter, we mainly look for a complex analog to develop
a machinery of integration along arcs and contours in the complex plane.
The problem, of course, is that between any two points there are an infinite
variety of paths along which to integrate. The antiderivative of a complex-
valued function f(z) of a complex variable z is completely analogous to that
for a real function; it is indeed a complex function F whose derivative is f .
Cauchy’s theorem, the fundamental theorem of complex integration says that
for analytic functions, one path over special domains is as good as another.

7.1 Curves

We begin by recalling some properties of the Riemann integral. Suppose f(t)
and g(t) are real-valued functions continuous on the interval a ≤ t ≤ b. Then
the Riemann integrals

∫ b

a
f(t) dt and

∫ b

a
g(t) dt exist. Further, for any real

constants c1 and c2, we have the linearity property
∫ b

a

(c1f(t) + c2g(t)) dt = c1

∫ b

a

f(t) dt + c2

∫ b

a

g(t) dt (7.1)

and the integral inequality∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)| dt. (7.2)

The integration of a complex-valued function of complex variable along a
contour leads to results of great importance both in pure and applied sciences.
Consider now the complex-valued function
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F (t) = F1(t) + iF2(t),

where F1(t) and F2(t) are real-valued functions continuous on the interval
[a, b]. For example, eit and (1 + 2 cos t)− 2i sin t are complex-valued functions
defined on every interval in R. Obviously, as F1 and F2 are integrable over
the interval [a, b], the definite integral of F (t) is defined by

∫ b

a

F (t) dt =
∫ b

a

F1(t) dt + i

∫ b

a

F2(t) dt. (7.3)

First, we observe that

Re
∫ b

a

F (t) dt =
∫ b

a

Re F (t) dt =
∫ b

a

F1(t) dt

and

Im
∫ b

a

F (t) dt =
∫ b

a

Im F (t) dt =
∫ b

a

F2(t) dt.

Many familiar rules of integration for real-valued functions can be carried over
to the complex case. For instance, the linearity property expressed in (7.1) is
true for complex-valued functions and complex constants. The proof consists
of separating into real and imaginary parts. To prove (7.2) for continuous
complex-valued functions F (t) on [a, b], suppose

∫ b

a

F (t) dt = Reiα (R > 0, − π < α ≤ π).

Then ∫ b

a

e−iαF (t) dt = e−iα

∫ b

a

F (t) dt = R =

∣∣∣∣∣
∫ b

a

F (t) dt

∣∣∣∣∣ . (7.4)

In view of (7.4) and properties of the real integral,

R = Re
∫ b

a

e−iαF (t) dt =
∫ b

a

Re
(
e−iαF (t)

)
dt

≤
∫ b

a

|e−iαF (t)| dt =
∫ b

a

|F (t)| dt.

The inequality is obvious when
∫ b

a
F (t) dt = 0. Thus, the magnitude of an

integral does not exceed the integral of the absolute value of the integrand.
Later in Theorem 7.19, we show that a similar inequality holds for integration
along contours.

Suppose that f(z) is a complex-valued function of a complex variable z
defined on a subset Ω ⊆ C. Suppose that z1 and z2 are two points in Ω. At
first, we are concerned with the following:
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Problem 7.1. How do we define the integral of a complex-valued function f
of complex variable z from z1 to z2?

Our discussion thus far provides no help in dealing with Problem 7.1. Over-
coming this problem will necessitate integrating along more general curves
than real intervals. First, we must define the notion of a curve in C.

A continuous curve (an arc) C in the complex plane is defined parametri-
cally by

C : z(t) = x(t) + iy(t) (t ∈ [a, b], a < b), (7.5)

where x(t) and y(t) are real-valued, continuous functions of the real variable
t. We will henceforth assume that all curves are continuous curves, so that
the terms “curve” and “arc” may be used interchangeably. So, by a curve C
in C, we mean a continuous function from [a, b] into C.

A curve may have more than one parameterization. For instance,

z1(t) = t (t ∈ [0, 1]) or z2(t) = t2 (t ∈ [0, 1])

represents the interval [0, 1]. A natural ambiguity arises when dealing with
curves. Though a curve is defined to be a function, and its properties are
those of functions, we shall also refer to the point set representing the graph
of the function as “the curve”. Thus, a curve is a continuous function as well
as a compact, connected set of points. When the topological properties of a
curve are being discussed, the curve will sometimes be denoted by C, without
regard to the parameterization from which the curve arose.

For a parameterized curve C defined by (7.5), the point z(a) is called
the initial point of C and z(b) the terminal point of C. If the initial and
terminal points coincide, i.e., z(a) = z(b), then C is said to be a closed curve.
If z(t1) �= z(t2) when t1 �= t2, so that C does not intersect itself, the curve
is said to be simple. A closed curve C : z(t), t ∈ [a, b], that is simple in the
interval (a, b) with the possible exception that z(a) = z(b) is said to be a
simple closed curve or Jordan curve.

Every simple closed curve cuts the plane into two separate domains. In
other words, we say that every simple closed curve has an interior (inside)
and an outside (exterior). We warn the reader that Jordan curve can be more
complicated than Figure 7.1. More formally, we have

Jordan Curve Theorem. If C is a simple closed (Jordan) curve, then the
complement of C consists of two disjoint domains, one bounded domain, and
the other an unbounded domain each of which has C as its boundary.

This geometrically intuitive theorem is remarkably difficult to prove. The
reader unwilling to accept the theorem on faith can find a proof in Newman
[Ne]. However, given a drawing of some particular simple closed curve, it is
usually easy to distinguish the inside from the outside.

A domain D is simply connected if each simple closed curve contained in
D contains only points of D inside.
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Figure 7.1. Illustration for Jordan curve theorem

For instance, consider the punctured unit disk D = {z : 0 < |z| < 1}.
Then D is a domain but is not simply connected. Some curves, such as C2,
C3 and C4 in Figure 7.2 contain only points on D, but C1 contains z = 0 and
z = 0 does not belong to D. We have the following heuristic interpretations.

Figure 7.2. Illustration for multiply connected domains

Topologically, a simply connected domain can be continuously shrunk to a
point. Note that the punctured unit disk D = {z : 0 < |z| < 1} can be
shrunk to an arbitrarily small domain, but not to a point in D. Geometrically,
a “simply connected domain” has “no holes” inside, for if a simple closed
curve should surround a hole, then the curve could not be shrunk beyond
the hole. Here again, removal of a single point from a domain is akin to
punching a hole in it. A domain that is not simply connected is said to be
multiply connected.Open disks, open rectangles and star shaped domains are
simple examples of simply connected domains. Punctured disks, punctured
rectangles, and the punctured plane all have one “hole” and hence are not
simply connected. The domain in Figure 7.3 has three holes and hence is not
simply connected.

Remark 7.2. In discussing simply connected domains, we will confine our-
selves to the finite complex plane. Consequently, the exterior of a circle is
not simply connected, since the domain is prevented from being shrunk to a
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Figure 7.3. Multiply connected domain with three holes

point by the circle from one end and by the point at ∞ from the other. In the
extended plane, the exterior of a circle is simply connected because it can be
“shrunk” to the point at ∞. •
Remark 7.3. While we have required analytic functions to be single-valued,
it is of interest to discuss a slightly more general concept than analytic, which
incorporates multiple-valued functions. We are tempted to say that log z is
analytic in the punctured plane because for each value z0 �= 0 a branch of
log z may be found in which log z is analytic at z0. As we shall see in Chap-
ter 13, this property of the logarithm will enable us to call the multiple-valued
function log z regular in the punctured plane. Note that a branch cut for log z
transforms the multiple-valued function into a single-valued function, and also
transforms a multiply connected domain (the punctured plane) into a simply
connected domain. After the term “regular” is carefully defined in Chapter 13,
we shall prove that a function regular in a simply connected domain must also
be single-valued (hence analytic) there. This is known as the Monodromy The-
orem. •

The boundary C of a domain is said to have positive orientation, or to be
traversed in the positive sense if a person walking on C always has the domain
to his left. The boundary |z − a| = R of the disk |z − a| < R has positive ori-
entation if traversed in a counterclockwise direction and negative orientation
if traversed in a clockwise direction. A word of caution: Don’t equate positive
with counterclockwise. For the annulus in Figure 7.4, the positive direction
along the outer circle is counterclockwise, while along the inner circle it is
clockwise.

Figure 7.4. An annulus region



200 7 Complex Integration and Cauchy’s Theorem

However, if a simple closed curve is given without reference to a region, it
will be assumed that the domain is inside so that the positive orientation will
be counterclockwise.

Remark 7.4. To unquestioningly accept the idea of counterclockwise is to
be deluded by the term “simple” closed curve. There are examples of simple
closed curves that are not “simple” in the intuitive sense of the word, which
occupy almost an entire square. For such a curve, the reader could spend a
lifetime tracking down the counterclockwise direction. Although our definition
of orientation is more intuitive than rigorous, it will be adequate for all curves
encountered in this text. •

Suppose that

C1 : z1(t) = eit = cos t + i sin t (0 ≤ t ≤ 2π),
C2 : z2(t) = e−it = cos t − i sin t (0 ≤ t ≤ 2π),
C3 : z3(t) = −eit = − cos t − i sin t (0 ≤ t ≤ 2π),
C4 : z4(t) = −e−it = − cos t + i sin t (0 ≤ t ≤ 2π).

All four of these simple closed curves traverse the unit circle. They differ from
one another either in initial point or in orientation. The curves C1 and C2

have initial point (1, 0), whereas C3 and C4 have initial point (−1, 0). The
curves C1 and C3 have positive orientation, and the curves C2 and C4 have
negative orientation (see Figure 7.5).

Figure 7.5. Oriented curves

A curve z(t) = x(t) + iy(t), t ∈ [a, b], having a continuous derivative (i.e.,
z(t) and z′(t) are continuous on [a, b]) is said to be smooth or continuously
differentiable on [a, b]. Of course, by the derivatives at the end points a, b, we
mean the appropriate one sided derivatives z′(a+) and z′(b−). For example,

z′(a+) = lim
t→a+

z(t) − z(a)
t − a

.

A curve γ that is not smooth consists of a finite sequence of smooth curves,
γ1, γ2, . . . , γn joined together end-to-end. In other words, by a curve we mean
a continuous piecewise smooth curve defined on a closed interval.
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Suppose that f(x) = u(x)+ iv(x) is a complex-valued continuous function
defined on [a, b]. As in the construction of Riemann integral of a real-valued
function over [a, b], we consider a partition

P : a = x0 < x1 < x2 < · · · < xn = b

and form the corresponding Riemann sum:

n∑
k=1

f(x∗
k)(xk − xk−1) =

n∑
k=1

u(x∗
k)(xk − xk−1) + i

n∑
k=1

v(x∗
k)(xk − xk−1)

where x∗
k is a point in [xk−1, xk]. As u and v are real-valued continuous on

[a, b], the Riemann sum on the right converges to

∫ b

a

u(x) dx + i

∫ b

a

v(x) dx

which leads us to define the integration of a complex-valued continuous func-
tion of a real variable:∫ b

a

f(x) dx =
∫ b

a

u(x) dx + i

∫ b

a

v(x) dx.

If f(x) is piecewise continuous on [a, b], then apply the above result to each
subintervals (ak−1, ak) (1 ≤ k ≤ m) on which f(x) is continuous, and define

∫ b

a

f(x) dx =
m∑

k=1

∫ ak

ak−1

u(x) dx + i

m∑
k=1

∫ ak

ak−1

v(x) dx.

Thus, (7.1) continues to hold if c1, c2 are complex constants and f, g are
piecewise continuous complex-valued function defined on [a, b].

More generally, if f(z) is a complex-valued continuous function defined on
a smooth curve

C : z(t) = x(t) + iy(t), t ∈ [a, b],

then it follows that t �→ f(z(t)) is a continuous function from [a, b] into C.
Consequently, t �→ f(z(t)) is continuous for a ≤ t ≤ b. We wish to prove that
the integral of f(z) on C is given by

∫
C

f(z) dz =
∫ b

a

f(z(t))z′(t) dt. (7.6)

We call the right-hand side of the last equation as a “pullback” of the left-
hand side of the equation to the interval [a, b]. Let us now first define this
integral as a limit of sums, analogous to the definition of the Riemann integral.
An advantage of (7.6) is that it enables us to use familiar properties of the
Riemann integral.
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Let P be a partition of [a, b] and z∗k = z(t∗k) denotes the point on the
subarc with end points z(tk−1) and z(tk). The Riemann sum approximating∫

C
f(z) dz corresponding to the partition P is given by

Sn =
n∑

k=1

f(z(t∗k))(z(tk) − z(tk−1)).

We have

Sn =
n∑

k=1

[u(x(t∗k), y(t∗k)) + iv(x(t∗k), y(t∗k))]

[x(tk) + iy(tk) − (x(tk−1) + iy(tk−1))]

=
n∑

k=1

u(x(t∗k), y(t∗k))(x(tk) − x(tk−1)) − v(x(t∗k), y(t∗k))(y(tk) − y(tk−1))

+i[u(x(t∗k), y(t∗k))(y(tk) − y(tk−1)) + v(x(t∗k), y(t∗k))(x(tk) − x(tk−1))].

Interpreting each sum on the right as a Riemann sum over the interval [a, b],
we have the complex line integral (or contour integral) of f along C as follows:∫

C

f(z) dz = lim
|P |→0

Sn

=
∫ b

a

u(z)x′(t) dt −
∫ b

a

v(z)y′(t) dt

+ i

∫ b

a

u(z)y′(t) dt + i

∫ b

a

v(z)x′(t) dt

=
∫

C

f(z(t))γ′(t) dt,

where |P | denotes the maximum of the length of the subintervals. Thus, we
have actually proved (7.6). We may conveniently write the last expression as

∫
C

f(z) dz =
∫ b

a

[ux′ − vy′] dt + i

∫ b

a

[uy′ + vx′] dt. (7.7)

Thus, just as a complex function may be expressed in terms of real-valued
functions, so may a complex integral clearly be expressed in terms of real-
valued integrals. We formulate the above discussion as

Theorem 7.5. Suppose that f(z) = u(x, y) + iv(x, y) is continuous on a pa-
rameterized smooth curve C : z(t) = x(t) + iy(t), t ∈ [a, b]. Then∫

C

f(z) dz =
∫

C

u dx − v dy + i

∫
C

u dy + v dx. (7.8)
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Observe that the right side of (7.8) would be obtained by the formal sub-
stitution

f = u + iv, dz = dx + i dy

into the left side of (7.8). Either equation (7.7) or (7.8) could have been taken
as the definition of the complex integral, instead of (7.6).

Also, we observe that the integrand on the right side of (7.6) would be
obtained by the formal substitution

z = z(t), dz = z′(t) dt

into the left side of (7.6). Moreover, in the special case that z(t) = t, the curve
is a real interval and (7.6) reduces to an integral of the form (7.3).

For a general piecewise smooth curve C, the derivative z′(t) need not be
continuous but is piecewise continuous so that

t �→ f(z(t))z′(t)

is piecewise continuous. In this case we evaluate the integral as a finite sums
of integrals of continuous functions. The above discussion leads to

Definition 7.6. Let C be a piecewise smooth curve on [a, b] and f a contin-
uous function on the graph/trace of C. The contour integral of f along C is
defined to be ∫

C

f(z) dz =
∫ b

a

f(z(t))z′(t) dt.

Sometimes the notation
∫

γ
f(z) dγ or

∫
γ

f dγ is used when γ is a piecewise
smooth curve.

An expression of the form
∫

C
P (x, y) dx + Q(x, y) dy is called a real line

integral. From (7.7), we see that the complex (line) integral may be expressed
in terms of two real line integrals. We give here an example to illustrate
different methods for computing a complex integral.

Example 7.7. Consider the problem of evaluating I =
∫

γ
z2 dz, where

(i) γ is an arc of a circle centered at the origin
(ii) γ is the union of the horizontal segment from 0 to 1 and the vertical

segment from 1 to 1 + 2i
(iii) γ is the line segment from 0 to 1 + 2i
(iv) γ is the contour parameterized by γ : z(t) = t2 + it (0 ≤ t ≤ 1).

Let f(z) = z2. In the first case we may write γ in the form

γ(t) = reit, a ≤ t ≤ b.

Then γ′(t) = ireit and f(γ(t))γ′(t) = ir3e3it so that
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I =
∫ b

a

f(γ(t))γ′(t) dt = r3 e3ib − e3ia

3
.

In particular if γ is a closed circle, then I = 0, since b = a + 2kπ for some
integer k. In the second case, we may write γ as

γ(t) =

{
t if 0 ≤ t ≤ 1,

1 + (t − 1)i if 1 ≤ t ≤ 3.

Therefore, we have

I =
∫ 1

0

f(γ(t))γ′(t) dt +
∫ 3

1

f(γ(t))γ′(t) dt =
∫ 1

0

t2 dt +
∫ 3

1

[1 + (t − 1)i]2i dt

and, it is a simple exercise to see that I = −(11 + 2i)/3.
In the third case, the path γ is given by γ(t) = t(1 + 2i), 0 ≤ t ≤ 1.

Therefore the integral is∫ 1

0

[t2(1 + 2i)2](1 + 2i) dt = (1 + 2i)3
t3

3

∣∣∣∣
1

0

= −11 + 2i
3

.

In the final case, according to (7.6), we can easily see that∫
γ

z2 dz = −2
3

+
2
3
i. •

Remark 7.8. At first glance, it appears that (7.8) serves no purpose other
than to introduce a cumbersome method for evaluating the complex integral.
We will rarely use (7.8) to compute integral directly. However, it will enable us
to formulate theorems about the complex integral from theorems about real
line integrals. This will lead to a method for evaluating the complex integral
that is far simpler than (7.6). •
Example 7.9. Consider the curve γ given by

z(t) =
{

t(1 + it sin(1/t)) if t �= 0
0 if t = 0.

Then

z′(t) =
{

1 + i(2t sin(1/t) − cos(1/t)) if t �= 0
1 if t = 0.

Note that z′(t) is discontinuous at 0 and neither the left nor the right limit of
z′(t) exists at 0. So, z′(t) is not piecewise continuous, for example on [−π, π].
Consequently, the restriction of the curve γ to [−π, π] is not smooth. •
Remark 7.10. The value of the real integral

∫ b

a
f(x) dx depends on the func-

tion f(x) and the end points of the interval [a, b]. The value of the complex
integral

∫
C

f(z) dz may depend on the function f(z) and all the points on the
curve C, not just the end points of C. •
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y

x

1 + i

C2

C1

Figure 7.6. Graph of curves C1 and C2

Example 7.11. We wish to find
∫

C
|z|2 dz along the curves

(a) C = C1 : z1(t) = t + it (0 ≤ t ≤ 1),
(b) C = C2 : z2(t) = t2 + it (0 ≤ t ≤ 1).

Clearly, C1 and C2 are smooth and f(z) = |z|2 is continuous on C. According
to (7.6),∫

C1

|z|2 dz =
∫ 1

0

|t + it|2(1 + i) dt = (1 + i)
∫ 1

0

2t2 dt =
2
3

+
2
3
i

and similarly, ∫
C2

|z|2 dz =
∫ 1

0

|t2 + it|2(2t + i) dt =
5
6

+
8
15

i.

Despite the fact that the straight line C1 and the parabola C2 have the
same initial and terminal points (see Figure 7.6), we have∫

C1

|z|2 dz �=
∫

C2

|z|2 dz.

Note, however, that∫
C1

z2 dz =
∫ 1

0

(t + it)2(1 + i) dt = 2i(1 + i)
1
3

=
∫

C1

z2 dz.

It is no coincidence that ∫
C1

z2 dz =
∫

C2

z2 dz.

It will later be shown that the value of
∫

C
z2 dz depends only on the initial

and terminal points of the smooth curve C. Our goal in this chapter is to
characterize the class of functions for which the integral is independent of
path, i.e., functions for which∫

C1

f(z) dz =
∫

C2

f(z) dz

along any smooth curves C1 and C2 having the same initial and terminal
points. •
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Questions 7.12.

1. Is a single “point” a curve?
2. Is a simple closed curve a simple curve?
3. In our definition of curve, would it have made any difference had the

parameter t been restricted to the interval [0,1]?
4. What is the relationship between simply connected and connected?
5. Can a domain and its complement both be simply connected?
6. Can a domain have finitely many holes?
7. Can a domain have infinitely many holes?
8. When a point is removed from a simply connected domain, is the new

domain simply connected?
9. Why was it important for the derivative of a curve to be continuous?

10. What is the relationship between an integral being independent of path
and an integral around a closed curve being zero?

11. Why is every curve compact and connected?
12. Let D be the complement in C of the real axis, i.e., D = C \R. Is D

simply connected?
13. Let D be the complement in C of the nonnegative real axis, i.e., D =

C \{x ∈ R : x ≥ 0}. Is D simply connected?

Exercises 7.13.

1. Describe the curve z(t) = a cos t + ib sin t (−π ≤ t ≤ π), where a and b
are positive real numbers.

2. Describe the curve z(t) = t3 + it2 (−1 ≤ t ≤ 1). Is it a “smooth curve”?
3. Describe the curve

z(t) =
1 − t2

1 + t2
+ i

2t

1 + t2
(−R ≤ t ≤ R).

What happens as R → ∞?
4. Plot the given curves

(i) z(t) =

⎧⎨
⎩

t if −3 ≤ t ≤ −1
eiπ(1−t)/2 if −1 ≤ t ≤ 1

t if 1 ≤ t ≤ 3.

(ii) z(t) =

⎧⎨
⎩

t(1 + i) if 0 ≤ t ≤ 1
3 + i − 2t if 1 ≤ t ≤ 2

(−1 + i)(3 − t) if 2 ≤ t ≤ 3.
5. Find a parameterized curve tracing out the following loci:

(a) The line segment from z = i to z = 1 − i
(b) The line segment from z = 1 to z = 2 + 3i
(c) The square whose vertices are ±1±i, traversed in the positive sense,

with initial point −1 − i
(d) The part of the circle |z − 1| = 2 in the right half-plane.

6. Find a parameterized curve for the parabola y = 2x2−3 that has initial
point z = −1 − i and terminal point z = 2 + 5i.
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7. Parameterize the following simple closed curves in polar coordinates.

(a) x2 + y2 = 4 (b) 4x2 + y2 = 1 (c) x2 + (y + 1)2 = 9.

8. Find
∫

C
z dz along the following curves.

(a) z(t) = eit (−π ≤ t ≤ π)
(b) z(t) = e2it (−π ≤ t ≤ π)
(c) z(t) = eit − 1 (−π ≤ t ≤ π)
(d) z(t) = t + it (0 ≤ t ≤ 2)
(e) z(t) = 5eit + 3 (0 ≤ t ≤ π)
(f) z(t) = 1 − t + it (0 ≤ t ≤ 1)
(g) z(t) = 1 + it (0 ≤ t ≤ 1)
(h) z(t) = 1 + i − t (0 ≤ t ≤ 1).

9. Along the curve C : z(t) = eit (−π ≤ t ≤ π), evaluate
∫

C
f(z) dz for

(a) f(z) = z2 (b) f(z) =
1
z

(c) f(z) =
1
z2

(d) f(z) = 2z − i

(
z +

1
z

)
.

7.2 Parameterizations

Suppose C : z(t) is a smooth curve defined on the interval [a, b]. Breaking
the interval into two subintervals [a, c] and [c, b], we obtain two curves C1 and
C2 from z(t) by restricting the parameter t to the intervals [a, c] and [c, b],
respectively. For any function f(z) continuous on C,

∫
C

f(z) dz =
∫ b

a

f(z(t))z′(t) dt

=
∫ c

a

f(z(t))z′(t) dt +
∫ b

c

f(z(t))z′(t) dt

=
∫

C1

f(z) dz +
∫

C2

f(z) dz.

Similarly, the curve C can be expressed as the “sum” of n curves with∫
C

f(z) dz =
∫

C1+ ···+Cn

f(z) dz (7.9)

=
∫

C1

f(z) dz +
∫

C2

f(z) dz + · · · +
∫

Cn

f(z) dz.

Remark 7.14. By the sum of two curves, we mean the curve formed by
joining the initial point of one curve to the terminal point of the other; this
is not to be confused with termwise addition of functions defined on the same
set. •
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A function is sectionally continuous on an interval if it has at most a finite
number of discontinuities, with right- and left-hand limits at each point in the
interval. More precisely, f is sectionally continuous on [a, b] if

(i) f is continuous at all but finitely many points on (a, b).
(ii) At any point c in (a, b) where f fails to be continuous, both left limit

limt→c− f(t) and the right limit limt→c+ f(t) exist and are finite.
(iii) At the end points, the right limit limt→a+ f(t) and the left limit

limt→b− f(t) exist and are finite.

A curve having a sectionally continuous derivative is called a contour. In
other words, piecewise smooth curve is called a contour. Recall that a path
C : z(t), t ∈ [a, b] is said to be piecewise smooth if there exists a partition
P : a = t0 < t1 < · · · < tn = b of [a, b] such that the restriction of C to each
of the subintervals [tk−1, tk], k = 1, 2, . . . , n, is a smooth curve.

Since every contour C may be expressed as the sum of a finite number of
smooth curves, C1 +C2 + · · · +Cn, the integral of a continuous function along
a contour is defined by (7.9).

Example 7.15. The curve

C : z(t) = t + i|t|, t ∈ [−1, 1],

is a piecewise smooth but not a smooth curve. It is easy to see that the
derivative at the origin fails to exist. The restriction of C to [−1, 0] and to [0, 1]
is clearly seen to be smooth. Hence, C is referred to as a contour. Note also that
C is simple but not closed. How about the curve described by z(t) = |t| + it,
t ∈ [−1, 1]? How about the curve described by z(t) = |t3|+ it3 on the interval
t ∈ [−1, 1]? •

Define C = C1 + C2 + C3 + C4, where Cj ’s are the line segments given by
C1 = [0, 1], C2 = [1, 1 + i], C3 = [1 + i, i], C4 = [i, 1]; see Figure 7.8. Then
C describes the boundary of a square. Note that the curve C is piecewise
smooth, simple and closed.

Example 7.16. We find the value of the integral
∫

C
z dz along the contour

Figure 7.7. The piecewise smooth curve C : z(t) = t + i|t|, t ∈ [−1, 1]
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Figure 7.8. The curve C = C1 + C2 + C3 + C4

C : z(t) =
{

2t if 0 ≤ t ≤ 1,
2 + i(t − 1) if 1 ≤ t ≤ 2.

Defining curves C1 and C2 by restricting the parameter t of C to the intervals
[0, 1] and [1, 2], respectively (see Figure 7.9), we have∫

C

z dz =
∫

C1

z dz +
∫

C2

z dz

=
∫ 1

0

2t(2 dt) +
∫ 2

1

{2 + i(t − 1)}(i dt)

=
∫ 1

0

4t dt −
∫ 2

1

(t − 1) dt +
∫ 2

1

2i dt

= 2 − 1
2

+ 2i =
3
2

+ 2i. •
Recall, from elementary calculus, that the (arc) length L of a smooth curve

in the plane defined parametrically by the equations

x = φ(t), y = ψ(t) (a ≤ t ≤ b)

is given by

Figure 7.9.
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L =
∫ b

a

√
(φ′(t))2 + (ψ′(t))2 dt =

∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

Note that the integrand on the right integral is recognized as ds/dt, where s
is the arc measured from the point z(a) of C. Using the parameterization

C : z(t) = x(t) + iy(t) (a ≤ t ≤ b)

for C, a smooth curve (or contour) in the plane, the length of C is given by

L =
∫ b

a

|z′(t)| dt =
∫ b

a

∣∣∣∣dx

dt
+ i

dy

dt

∣∣∣∣ dt. (7.10)

In the special case that the curve is a line segment from z0 to z1, parameterized
by

z(t) = tz0 + (1 − t)z1 (0 ≤ t ≤ 1),

we have z′(t) = z1 − z0. Hence, as expected,

L =
∫ 1

0

|z′(t)| dt =
∫ 1

0

|z1 − z0| dt = |z1 − z0|.

When z is on C, the symbol |dz| = |z′(t)| dt so that (7.10) may also be
written as

L =
∫

C

|dz| =
∫

C

ds, (7.11)

it being understood that C is parameterized by z(t). This observation partly
explains why

∫
C

f(z) |dz| defines an integral of f along C with respect to arc
length: ∫

C

f(z) |dz| =
∫ b

a

f(z(t))|z′(t)| dt.

The arc length integrals of this type play significant roles in certain areas of
mathematics and physics.

Example 7.17. Let us now evaluate
∫

C
z−n |dz| where C = z(t) = reit (r >

0, 0 ≤ t ≤ 2π and n ∈ Z). Set f(z) = 1/zn. Note that C is smooth and

z′(t) = ireit, f(z(t)) =
e−int

rn
.

Therefore,∫
C

1
zn

|dz| =
∫ 2π

0

r dt

rneint
=

1
rn−1

∫ 2π

0

e−int dt =
{

0 if n �= 0
2πr if n = 0. •
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Remark 7.18. It is meaningful to talk about the length of an arbitrary curve.
However, if the curve is not a contour, then the length may not be finite.
Consider an arbitrary curve z(t), with a ≤ t ≤ b. Define

V (P ) =
n∑

k=1

|z(tk) − z(tk−1)|, (7.12)

where a = t0 < t1 < · · · < tn = b is a partition P . By the triangle inequality,
V (P ) increases monotonically as the subintervals are further subdivided into
smaller subintervals. The length of this curve can be defined as the least upper
bound of all sums of the form (7.12), that is,

sup
P

n∑
k=1

|z(tk) − z(tk−1)|.

If the length is finite, the curve is said to be rectifiable. The reader should
verify that every contour is rectifiable and that, in the case of a contour, this
definition agrees with (7.11). In Exercise 7.29(1), an example of a nonrectifi-
able curve is given. •

What follows is the complex analog to a well-known real variable theorem.

Theorem 7.19. (M-L Inequality) Suppose f(z) is continuous on a contour
C having length L, with |f(z)| ≤ M on C. Then∣∣∣∣

∫
C

f(z) dz

∣∣∣∣ ≤
∫

C

|f(z)| |dz| ≤ M

∫
C

|dz| = ML.

Proof. Since C is parameterized by z(t) on the interval [a, b], we have

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t))z′(t) dt

∣∣∣∣∣
≤

∫ b

a

|f(z(t))| |z′(t)| dt =
∫

C

|f(z)| |dz|

≤ M

∫ b

a

|z′(t)| dt = ML (since |f(z)| ≤ M on C)

and the conclusion follows.

For example, we can use the M-L Inequality to find an upper bound for
|
∫

C
(z2 + 10)−1 dz|, where C is the circle C : z(t) = 2eit (−π ≤ t ≤ π). In

fact, for z ∈ C, |z2 + 10| ≥ 10 − |z|2 = 10 − |z(t)|2 ≥ 10 − 4 = 6, and so, we
have ∣∣∣∣

∫
C

dz

z2 + 10

∣∣∣∣ ≤
∫

C

|dz|
|z2 + 10| ≤

1
6

∫
C

|dz| =
2π

3
.
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Similarly, we easily see that∣∣∣∣
∫

C

ez

z + 1
dz

∣∣∣∣ ≤ 4πe2.

Strictly speaking, a curve C is associated with a definite parametric form
C : z = z(t), a ≤ t ≤ b and so, the length of a curve is defined in terms of its
parameter; but it is geometrically evident that, for simple curves, the length
is independent of the parameterization. For instance, the curves

C1 : z1(t) = eit (0 ≤ t ≤ π), and C2 : z2(t) = e2it (0 ≤ t ≤ π/2)

both traverse the upper half of the unit circle. Moreover, by (7.11), we have∫
C1

|dz1| =
∫ π

0

|z′1(t)| dt =
∫ π

0

dt = π,

and ∫
C2

|dz2| =
∫ π/2

0

|z′2(t)| dt =
∫ π/2

0

2 dt = π.

The contours C1 and C2, although different in formal sense because they arise
from different parameterizations, have the same length.

Remark 7.20. The curves eit (0 ≤ t ≤ 2π) and e2it (0 ≤ t ≤ 2π) both
represent the set of points on the unit circle. The length of the first curve
is 2π and that of second is 4π. Note, however, that the second curve is not
simple because it traverses the unit circle twice. •

The next theorem gives general criteria for changing parameters without
affecting arc length.

Theorem 7.21. Let C : z(t) = x(t) + iy(t), a ≤ t ≤ b, be a contour. Suppose
t = φ(s) with a = φ(c), b = φ(d), and φ′(s) > 0, so that t increases with s.
If φ′(s) is sectionally continuous on the interval [c, d], then the length of C is
given by

L =
∫ d

c

|z′(φ(s))|φ′(s) ds.

Proof. By (7.10) and the chain rule,

L =
∫ b

a

|z′(t)| dt =
∫ b

a

|x′(t) + iy′(t)| dt

=
∫ b

a

|x′(φ(s)) + iy′(φ(s))| dφ(s)

=
∫ b

a

|z′(φ(s))|φ′(s) ds.
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Let C be an arc z(t), −2 ≤ t ≤ 1 and let C1 be the arc z(s) = γ(3s − 5),
1 ≤ s ≤ 2. Clearly, C and C1 have the same initial and the same end point,
and the same trajectory. It is easy to see that∫

C

f(z) dz =
∫

C1

f(z) dz (7.13)

holds for every continuous function in D which contains C1 and C2. Indeed,
if we set t = φ(s) = 3s − 5, then φ(1) = −2, φ(2) = 1 and φ′(s) = 3. Hence∫

C1

f(z) dz =
∫ 2

1

f(γ(3s − 5))3γ′(3s − 5) ds.

By the substitution t = φ(s), the change of variable leads to
∫ 2

1
f(z(t))z′(t) dt

which is nothing but the right-hand side of (7.13). This continues to hold for
a broader class of functions as we see next.

Suppose that f(z) is continuous on a contour C : z(t), a ≤ t ≤ b, and that
t = φ(s) satisfies the conditions of Theorem 7.21. Then the chain rule may be
applied to obtain∫

C

f(z) dz =
∫ b

a

f(z(t))z′(t) dt (7.14)

=
∫ d

c

f(z(φ(s)))z′(φ(s))φ′(s) ds.

Since z′(φ(s))φ′(s) is the derivative with respect to s of z(φ(s)), the curve
C could have been parameterized by z(φ(s)), c ≤ s ≤ d, without affecting the
value of the integral.

The contour

−C : z(−t) = x(−t) + iy(−t) (−b ≤ t ≤ −a)

represents the same curve, traversed in the opposite direction, as

C : z(t) = x(t) + iy(t) (a ≤ t ≤ b).

We have ∫
−C

f(z) dz =
∫ −a

−b

f(z(−t))z′(−t)(−1) dt

and, upon making the substitution s = −t,∫
−C

f(z) dz =
∫ a

b

f(z(s))z′(s) ds (7.15)

= −
∫ b

a

f(z(s))z′(s) ds

= −
∫

C

f(z) dz.
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Remark 7.22. Loosely speaking, equations (7.14) and (7.15) say that the
value of the integral along a simple contour C, viewed as a point set in the
plane, depends on the parameterization of the contour only with regard to
orientation. •
Remark 7.23. Since integrating around a circle is such a common occurrence,
we introduce the notation

∫
|z−z0|=r

f(z) dz, which will be interpreted as the
integral of f(z) around the contour consisting of the circle |z−z0| = r oriented
in the positive sense. •
Examples 7.24. Let us evaluate

∫
C
|z|n dz (n ∈ N0 := N ∪ {0}) along the

straight line C joining the origin to the point 1 + i. We parameterize the line
by

C : z(t) = t + it (0 ≤ t ≤ 1). (7.16)

Then z′(t) = 1 + i, and∫
C

|z|n dz =
∫ 1

0

|t + it|n(1 + i) dt = 2n/2(1 + i)
∫ 1

0

tn dt =
2n/2(1 + i)

n + 1
.

The parameterization (7.16) was chosen because it was the most natural. We
could have parameterized C by

C : z(t) = x(t) + ix(t) (a ≤ t ≤ b),

where x(a) = 0, x(b) = 1, and x′(t) > 0. Then z′(t) = (1 + i)x′(t), and∫
C

|z|n dz =
∫ b

a

|x(t) + ix(t)|n(1 + i)x′(t) dt

= 2n/2(1 + i)
∫ b

a

(x(t))nx′(t) dt

= 2n/2(1 + i)
(

(x(b))n+1 − (x(a))n+1

n + 1

)
=

2n/2(1 + i)
n + 1

.

Next, to evaluate ∫
|z|=r

|z|n dz (n ∈ Z),

we parameterize the specified circle by z(t) = reit, 0 ≤ t ≤ 2π, so that∫
C

|z|n dz =
∫ 2π

0

|reit|nireit dt = irn+1

∫ 2π

0

eit dt = 0. •
Example 7.25. Let us now consider one more similar integral over a closed
contour. Consider

∫
C
|z| dz along the rectangle C having corners −1, 1, 1 +

i,−1 + i. This contour is the sum of four smooth curves (straight lines). We
have
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C

|z| dz =
∫

C1

|z| dz +
∫

C2

|z| dz +
∫

C3

|z| dz +
∫

C4

|z| dz,

where
C1 : z1(t) = t (−1 ≤ t ≤ 1),
C2 : z2(t) = 1 + it (0 ≤ t ≤ 1),
C3 : z3(t) = −t + i (−1 ≤ t ≤ 1),
C4 : z4(t) = −1 − it (−1 ≤ t ≤ 0).

Solving, we obtain∫
C

|z| dz =
∫ 1

−1

|t| dt + i

∫ 1

0

√
1 + t2 dt −

∫ 1

−1

√
t2 + 1 dt − i

∫ 0

−1

√
1 + t2 dt

=
∫ 1

−1

(|t| −
√

t2 + 1) dt

= 2
∫ 1

0

(t −
√

t2 + 1) dt

= 1 −
√

2 − ln(
√

2 + 1). •
Remark 7.26. The contour C is not the sum of the four curves C1, C2, C3, C4

as defined in (7.9), because these curves are not parameterized on four dis-
tinct subintervals of the interval on which C is parameterized; but according
to (7.14), the parameterization is not critical, so we will adopt a more lib-
eral definition of “sum” that does not require a specific parameterization. In
fact, we may even integrate without expressing x and y in terms of common
parameter t. Therefore, in the last example, we could just as well have written∫

C

|z| dz =
∫ 1

−1

|x| dx +
∫ 1

0

|1 + iy|i dy +
∫ −1

1

|x + i| dx +
∫ 0

1

| − 1 + iy|i dy.

Here, we are actually using x for the parameter on C1 and C3, and y for the
parameter on C2 and C4. •
Examples 7.27. For each integer n, we have∫
|z|=r

zn dz =
∫ 2π

0

(reit)nireit dt = irn+1

∫ 2π

0

ei(n+1)t dt =
{

0 if n �= −1,
2πi if n = −1.

Note that the value of this integral is independent of the radius of the given
circle.

Our final example of this section is to compute I =
∫
|z|=r

x dz. Note that
|z|2 = zz = r2 and x = (z + z)/2. Thus, the linearity property gives

I =
1
2

∫
|z|=r

(z + r2/z) dz =
1
2

∫
|z|=r

z dz +
r2

2

∫
|z|=r

dz

z
= iπr2.

Note that the value of the integral in this case depends on the radius of the
given circle. Why is this so? Again, as z = r2/z, we have
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|z|=r

(z)n dz = r2n

∫
|z|=r

1
zn

dz =
{

2πir2 if n = 1
0 if n ∈ Z \ {1}. •

Questions 7.28.

1. Can (7.9) be extended to the case of infinitely many curves?
2. How may the following expressions be interpreted?

(a)
∫

C

|f(z)| dz (b)
∫

C

f(z) |dz| (c)
∫

C

|f(z)| |dz|.

3. Can
∫

C
f(z) dz be defined without requiring f(z) to be continuous at

all points of C?
4. If f(z) is continuous on a contour C, does |f(z)| necessarily assume a

maximum on C?
5. If f(z) is continuous for |z| < r for some r > 0 such that f(0) = 0, is

limδ→0

∫ 2π

0
f(δeiθ) dθ = 0? Is limδ→0

∫
|z|=δ

f(z)
z dz = 0?

6. Does the orientation affect the length of a curve?
7. Why is it usually easier to integrate along a circle than along a square?
8. If |f(z)| ≤ 2 on the circle |z| = 3, is

∣∣∣∫|z|=3
f(z) dz

∣∣∣ ≤ 3?

Exercises 7.29.

1. Show that the curve C parameterized by

z(t) =
{

t
(
cos

(
1
t

)
+ i sin

(
1
t

))
if 0 < t ≤ 1

0 if t = 0,

is nonrectifiable.
2. Prove that every (continuous) curve is bounded.
3. Show that

(a)

∣∣∣∣∣
∫
|z|=1

dz

3 + 5z2

∣∣∣∣∣ ≤ π (b)

∣∣∣∣∣
∫
|z|=1

2z + 1
5 + z2

dz

∣∣∣∣∣ ≤ 3π

2
.

4. Find the length of the following contours.
(a) z(t) = 3e2it + 2 (−π ≤ t ≤ π)
(b) z(t) = et cos t + iet sin t (−π ≤ t ≤ π).

5. Evaluate
∫

C
x dz,

∫
C

y dz,
∫

C
z dz along the following contours:

(a) The line segment from the origin to 1 + i
(b) The line segment from the origin to 1 − i
(c) The circle |z| = 1
(d) The curve C consisting of the line segment from 0 to 1 followed by

the line segment from 1 to 1 + i
(e) The curve C consisting of the line segment from 0 to i followed by

the line segment from i to 1 + i.
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6. Evaluate
∫

C
z dz,

∫
C
|z| dz,

∫
C

z|z| dz,
∫

C
z |dz|,

∫
C
|z| |dz| along

the same contours as above. Do the same for the closed contour C
consisting of the upper semicircle |z| = 1 from 1 to −1, and the line
segment [−1, 1].

7. Evaluate
∫

C
|z|2 dz,

∫
C

Re z |dz| and
∫

C
Im z |dz|, where C : z(t) =

t2/3 + it for 0 ≤ t ≤ 1.
8. Evaluate

∫
C

(az + bz) dz where a, b are some nonzero fixed constants
and C is the contour given by C = [0, eiπ/6] ∪ {eiθ : π/6 ≤ θ ≤ π/2} ∪
[eiπ/3, 0]. Do the same by replacing π/6 by α and π/3 by β, 0 ≤ α <
β ≤ 2π. Do the same for C : z(t) = −t + i(t2 + 2), 0 ≤ t ≤ 2.

9. Evaluate
∫

C
(1/z) dz along the square having corners ±1 ± i.

10. Evaluate the following integrals:
(a)

∫
C

ez dz along the line segment from the origin to 2 + 2i
(b)

∫
C

(ez + z + 1) dz along the line segment from −1 + i to 1 − i
(c)

∫
C

cos z dz along the line segment from the origin to the point 1 + i
(d)

∫
C
|z|2 dz along the square with vertices 0, 1, 1 + i, i

(e)
∫

C
(x2 + iy2) dz along the line segment from 0 to 1 + i followed by

the line segment from 1 + i to 1 + 2i.
11. Evaluate

∫
C

(z/z) dz along the simple closed contour C shown in Fig-
ure 7.10.

Figure 7.10.

12. Evaluate
∫

C
z|z| dz along the upper semicircle |z| = R from R to −R,

and the line segment [−R, R].

7.3 Line Integrals

In order to draw a useful analogue with single-variable calculus, we begin
by reviewing the (first) fundamental theorem of calculus. Suppose f(x) is
continuous on the interval [a, b]. The first fundamental theorem of calculus
asserts the existence of an antiderivative F (x) for f(x) (i.e., a function F
such that F ′(x) = f(x) on [a, b]) with∫ b

a

f(x) dx = F (b) − F (a).
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This theorem relates the behavior of a function on the boundary of a set (two
points) to the behavior of an associated function, its derivative, on the whole
set (a closed interval). From our earlier discussion, it is clear that the familiar
properties of Riemann integral is carried over to the case of complex integrals.
For instance, if f, g : [a, b] → C are continuous and if c is a complex constant,
then ∫ b

a

(f(x) + cg(x)) dx =
∫ b

a

f(x) dx + c

∫ b

a

g(x) dx.

The fundamental theorem of calculus is also valid in this setting. More pre-
cisely, we have

Theorem 7.30. If f : [a, b] → C is continuous and if there exists a function
F (x) such that F ′(x) = f(x) on [a, b], then

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a).

For instance, if f1(t) = 3t2 − 2it and f2(t) = e2πit, then the corresponding
antiderivatives are F1(t) = t3 − it2 and F2(t) = e2πit/(2πi) so that

∫ 1

0

(3t2 − 2it) dt = t3 − it2
∣∣1
0

= 1 − i and
∫ 1

0

e2πit dt =
e2πit

2πi

∣∣∣∣
1

0

= 0.

The second fundamental theorem of calculus asserts that “if f : [a, b] → R

is continuous, then the indefinite integral

F (t) =
∫ t

a

f(x) dx, a ≤ t ≤ b,

is an antiderivative for f(t). Moreover, each antiderivative for f(t) differs from
F (t) by a constant.” Our next theorem is a two-dimensional analogue of the
first fundamental theorem of calculus.

Theorem 7.31. (Green’s Theorem) Let P (x, y) and Q(x, y) be continuous
with continuous partials in a simply connected closed region R whose boundary
is the contour C. Then∫

C

P dx + Q dy =
∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy, (7.17)

where C is traversed in the positive sense.

Proof. We prove the theorem in the special case that R is a rectangle (and
its interior) whose sides are parallel to the coordinate axes (see Figure 7.11).
Let C = C1 + C2 + C3 + C4 in Figure 7.11. Observing that dy ≡ 0 on C1 and
C3 while dx ≡ 0 on C2 and C4, we have
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Figure 7.11.

∫
C

P (x, y) dx + Q(x, y) dy =
∫ x1

x0

P (x, y0) dx +
∫ y1

y0

Q(x1, y) dy

+
∫ x0

x1

P (x, y1) dx +
∫ y0

y1

Q(x0, y) dy.

Combining these integrals, we obtain∫
C

P dx + Q dy =
∫ x1

x0

{P (x, y0) − P (x, y1)} dx (7.18)

+
∫ y1

y0

{Q(x1, y) − Q(x0, y)} dy.

The fundamental theorem of calculus may now be applied to the integrands
on the right side of (7.18). This yields∫

C

P dx + Q dy =
∫ x1

x0

∫ y1

y0

−∂P

∂y
dy dx +

∫ y1

y0

∫ x1

x0

∂Q

∂x
dx dy (7.19)

=
∫ y1

y0

∫ x1

x0

(
∂Q

∂x
− ∂P

∂y

)
dx dy

=
∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy,

where the interchange in the order of the integration in (7.7) may be under-
stood by viewing the iterated integral as representing a volume. This proves
the theorem for the rectangle in Figure 7.11. For a complete proof of Green’s
theorem, see Apostol [Ap].

Example 7.32. Let us evaluate the line integral∫
C

xy dx + (x2 + y2) dy

along the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. A direct proof gives
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C

xy dx + (x2 + y2) dy =
∫ 1

0

x · 0 dx +
∫ 1

0

(1 + y2) dy

+
∫ 0

1

x · 1 dx +
∫ 0

1

(0 + y2) dy

=
∫ 1

0

dy −
∫ 1

0

x dx =
1
2
.

Alternately, by Green’s theorem,∫
C

xy dx + (x2 + y2) dy =
∫ 1

0

∫ 1

0

(2x − x) dx dy =
1
2
. •

Enough playing around. We now return to complex variables to show the
reason for introducing Green’s theorem.

Theorem 7.33. (Cauchy’s “Weak” Theorem) If f(z) is analytic (with a
continuous derivative) in a simply connected domain D, and C is closed con-
tour lying in D, then we have

∫
C

f(z) dz = 0.

Proof. Set f(z) = u(x, y) + iv(x, y). By the Cauchy–Riemann equations for
analytic functions,

ux = vy, uy = −vx for (x, y) ∈ D. (7.20)

Since f ′(z) is presumed continuous, the four partials must also be continu-
ous. Suppose, for the moment, that C is a simple closed contour. Then an
application of Green’s theorem to (7.8) yields∫

C

f(z) dz =
∫

C

u dx − v dy + i

∫
C

v dx + u dy

=
∫ ∫

R

(
−∂v

∂x
− ∂u

∂y

)
dx dy + i

∫ ∫
R

(
∂u

∂x
− ∂v

∂y

)
dx dy,

where R is the region enclosed by C. In view of (7.20), both integrands on
the right are identically zero in R. This proves the theorem when C is simple
closed contour.

For a general closed contour, the proof follows in like manner from a more
general statement of Green’s theorem. See Apostol [Ap].

Corollary 7.34. Under the conditions of Theorem 7.33, let C1 and C2 be any
contours in the domain with the same initial and terminal points. Then∫

C1

f(z) dz =
∫

C2

f(z) dz.

Proof. Suppose C1 and C2 both have initial and terminal points z0 and z1

respectively (see Figure 7.12). Let C = C1 − C2. Then
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Figure 7.12.

∫
C

f(z) dz =
∫

C1−C2

f(z) dz

=
∫

C1

f(z) dz +
∫
−C2

f(z) dz

=
∫

C1

f(z) dz −
∫

C2

f(z) dz.

Since C is a closed contour,
∫

C
f(z) dz = 0, from which we conclude that∫

C1
f(z) dz =

∫
C2

f(z) dz.

Remark 7.35. Corollary 7.34 (as well as Theorem 7.33) says that the inte-
gral is independent of path in the domain. That is, the value of the integral
just depends on the initial and terminal points, provided only that the con-
tour stays inside the domain where the function is continuously differentiable.
Hence, under the conditions of the theorem, we can give meaning to the ex-
pression

∫ z1

z0
f(z) dz. Its value may be found by computing the complex line

integral
∫

C
f(z) dz along any contour C in the domain that has initial point

z0 and terminal point z1. In particular, if the contour C is closed (z1 = z0),
then ∫

C

f(z) dz =
∫ z1

z0

f(z) dz = 0. •
Cauchy’s theorem, in its present form, is weak because the analytic func-

tion was required to have a continuous derivative (so that Green’s theorem
could be applied). While this may seem like a minor restriction, it does not
allow us to apply Cauchy’s theorem to the class of all analytic functions. How-
ever, in the next section, this restrictive hypothesis will be eliminated. Then,
in Chapter 8, it will be shown that every analytic function does, in fact, have
a continuous derivative.

We will now examine the extent to which Cauchy’s theorem is valid for
multiply connected regions. Recall that∫

|z|=1

1
z

dz =
∫ 2π

0

ieiθ

eiθ
dθ = 2πi.
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Thus even though the function f(z) = 1/z is analytic everywhere on the unit
circle, the above integral is not zero. Note that f has derivatives of all orders
in C \ {0}. Cauchy’s theorem is not applicable because the punctured disk is
not simply connected. To trace what went wrong with this function, observe
that 1/z is the derivative of many different branches of log z. Suppose we start
with any point w on the unit circle and integrate counterclockwise around the
circle through one revolution. While the terminal point we2πi has the same
location in the plane as the initial point w, its argument has increased by 2π.
Choosing a specific branch for the logarithm, with a branch cut on the ray
arg z = −α, w = eiα, we may now write

∫
|z|=1

1
z

dz =
∫
|z|=1

d

dz
log z = log z

∣∣∣∣∣
we2πi

w

= log we2πi − log w.

This last expression simplifies to

ln |we2πi| + i arg we2πi − (ln |w| + i arg w) = i(arg we2πi − arg w) = 2πi.

Thus the integral is nonzero because the function 1/z has many antideriva-
tives. The value of the integral is related to the change in the argument of the
multiple-valued function log z. Note also that the value of the integral is inde-
pendent of the choice of the initial branch. For simply connected domains, this
problem does not arise because analytic functions then have single-valued an-
tiderivatives as we shall see. Moreover, this idea can be extended to any closed
contour C : z(t), a ≤ t ≤ b that does not pass through the origin. Indeed, if
C is a closed contour that avoids the origin, then we have∫

C

dz

z
= log z(t)|ba = i arg z(t)|ba = i θ|C

where θ is the angle which the line segment [0, z(t)] joining 0 to the variable
point z(t) makes with the horizontal line. Thus, the total variation is 2π times
the number of times z winds around 0 as z traverses C. In other words,

1
2πi

∫
C

dz

z

is an integer which is called the winding number of C with respect to the
origin (see for example [A, P1]).

Suppose we integrate 1/z along the boundary C of the multiply connected
region consisting of the annulus r0 < |z| < r1 (r0 > 0). If the integration is
performed in the positive sense (where the domain always remains on the left)
as shown in Figure 7.13, then∫

C

1
z

dz =
∮
|z|=r1

1
z

dz +
∮
|z|=r0

1
z

dz

=
∫ 2π

0

ir1e
iθ

r1eiθ
dθ +

∫ −2π

0

ir0e
iθ

r0eiθ
dθ

= 2πi − 2πi = 0.
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Figure 7.13.

The fact that this integral is zero is a consequence of the following Cauchy
theorem for multiply connected regions.

Theorem 7.36. Suppose that f(z) is analytic (with a continuous derivative)
in a multiply connected domain and on its boundary C. Then we have∫

C
f(z) dz = 0, where the integration is performed along C in the positive

sense.

We indicate a method of proof that involves “transforming” a multiply
connected region into a simply connected region. To illustrate, consider the
multiply connected region in Figure 7.14. Suppose we construct the line seg-
ment AB, called a cross-cut, which connects the outer boundary C1 with the
inner boundary C2. Then the domain bounded by the contour C1, the line
segment AB, the contour C2, and the line segment BA (traversed as illus-
trated in Figure 7.14) is simply connected. This is so because no closed curve
in the new region is allowed to cross the line segment AB. Let C denote the
boundary of this domain. Then by Cauchy’s theorem for simply connected
regions, we have∫

C

f(z) dz =
∮

C1

f(z) dz +
∫

AB

f(z) dz +
∮

C2

f(z) dz +
∫

BA

f(z) dz

= 0.

Figure 7.14.
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Note that ∫
AB

f(z) dz = −
∫

BA

f(z) dz,

so that ∫
C1+C2

f(z) dz =
∮

C1

f(z) dz +
∮

C2

f(z) dz = 0.

This finishes the discussion of Cauchy’s theorem for the domain in Figure 7.14.
In Figure 7.15, we illustrate Cauchy’s theorem for domain with (n− 1) holes.

Figure 7.15.

In a manner similar to that used for one hole, we get∫
C1+C2+ ···+cn

f(z) dz = 0. (7.21)

Equation (7.21) can be written in the form∮
C1

f(z) dz = −
[∮

C2

f(z) dz + · · · +
∮

Cn

f(z) dz

]

=
∮
−C2

f(z) dz + · · · +
∮
−Cn

f(z) dz.

In other words, by integrating along each inner contour in the counterclockwise
direction, so that the (n−1) inner contours have negative orientation, it follows
that the value of the integral along the outer contour is equal to the sum of
the values along the inner contours.

In a more complicated multiply connected region, it may not be possible to
connect an inner boundary to an outer boundary by a straight line segment;
but a polygonal line can always be found that furnishes us with the necessary
cross-cut for any multiply connected region. In fact, Green’s theorem can also
be generalized from simply to multiply connected regions, thus affording us
with a direct proof of Cauchy’s theorem for multiply connected regions.

Finally, we remark that requiring analyticity on the boundary C in
Theorem 7.36 means that the function is actually analytic in a domain con-
taining C.
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Questions 7.37.

1. What are the differences between real and complex line integrals? Be-
tween a line integral and a Riemann integral?

2. Where was continuity of the partials used in proving Green’s theorem
for rectangles?

3. Why is Green’s theorem a two-dimensional analog to the fundamental
theorem of calculus?

4. In Green’s theorem, if C were traversed in the negative direction, what
could we conclude?

5. How does Green’s theorem give us a way to compute the area of a
region?

6. Suppose f(z) has a continuous derivative in a simply connected region
whose boundary is C. May Cauchy’s theorem be applied to conclude∫

C
f(z) dz = 0?

7. Suppose
∫

C
f(z) dz = 0 for some contour C. Can anything be said about

f(z)?
8. Does Cauchy’s theorem apply to a function having a continuous deriva-

tive in a region exterior to a disk?
9. Can Cauchy’s theorem be used to evaluate Riemann integrals?

10. Let u(z) = u(x, y) be a real-valued harmonic function on the unit disk
Δ, and γ be a simple closed contour in Δ. Is

∫
γ

u(z) dz = 0? How about
if Δ is replaced by a general domain D?

11. Is
∫

C
z dz independent of the path C between 0 and 1 + i?

12. Is
∫

C
(Re z) dz independent of the path C between 0 and 1 + i?

13. Is
∫

C
z dz independent of the path C between 0 and 1 + i?

Exercises 7.38.

1. Evaluate the following line integrals:

(a)
∫

C

xy dx+(x2+y2) dy along the quarter-circle C in the first quadrant

having radius r = 2.

(b)
∫

C

x2y dx + (2x + 1)y2 dy along the square having vertices (1, 0),

(1,−1), (2,−1), and (2, 0).

(c)
∫

C

y2 dx + x2 dy along the curve C parameterized by x = a cos3 t,

y = a sin3 t (0 ≤ t ≤ 2π).

(d)
∫

C

xy2

x2 + y2
dy along the circle |z| = r.

(e)
∫

C

(x2 + xy) dy along the parabola y = x2 from (−2, 4) to (2, 4).

2. Let C be any simple closed contour bounding a region having area A.
Prove that



226 7 Complex Integration and Cauchy’s Theorem

A =
1
2

∫
C

x dy − y dx = −
∫

C

y dz = −i

∫
C

x dz = − i

2

∫
C

z dz.

3. Modify the proof of Green’s theorem for a rectangle to show that∫
C

P (x, y) dx = −
∫ ∫

R

∂P

∂y
dx dy,

∫
C

Q(x, y) dy =
∫ ∫

R

∂Q

∂x
dx dy.

4. Verify Cauchy’s theorem for the functions 3z − 2 and z2 + 3z − 1 if C is
the square having corners ±1 ± i.

5. By evaluating
∫
|z|=1

ez dz, show that

∫ π

−π

ecos θ cos(θ + sin θ) dθ =
∫ π

−π

ecos θ sin(θ + sin θ) dθ = 0.

6. Evaluate the following integrals along any contour between the points
represented by the limits of integration.

(a)
∫ πi

−πi

ez dz (b)
∫ π+i

0

eiz dz (c)
∫ 2+i

1−i

(z2 + 3z − 2) dz.

7.4 Cauchy’s Theorem

The central theme of this section is to investigate conditions to cover general
situations so that the integral of an analytic function along a closed con-
tour vanishes. We will actually prove several forms of Cauchy’s theorem (also
called the Cauchy–Goursat theorem), each involving different geometric and
topological considerations. Goursat showed that Theorem 7.33 can be proved
without assuming the continuity of f ′(z). In its simplest form, the theorem is
proved for a rectangle. The proof involves a construction similar to that used
in the proof of the Heine–Borel theorem (Theorem 2.26). The ultimate aim is
to understand precisely the local structure of analytic functions.

Theorem 7.39. (Cauchy’s theorem for a rectangle) Let f(z) be analytic in
a domain containing a rectangle C and its interior. Then

∫
C

f(z) dz = 0.

Proof. Divide C into four congruent rectangles C(1), C(2), C(3) and C(4) as
indicated in Figure 7.16, and let Ij

1 =
∫

C(j) f(z) dz for 1 ≤ j ≤ 4. The in-
tegrals over the common sides have opposite orientation, and hence cancel
one another. Therefore, from the known properties in the complex integral, it
follows that

I :=
∫

C

f(z) dz =
4∑

j=1

Ij
1 .

By the triangle inequality,
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Figure 7.16.

|I| ≤
4∑

j=1

|Ij
1 |. (7.22)

If every term in this sum were less than |I|/4, then we would get a contradic-
tion. Thus, for at least one of the terms on the right side of (7.22), denoted
conveniently by I1 =

∫
C1

f(z) dz, we have

|I1| ≥ |I|/4.

Next divide the rectangle C1 into four congruent rectangles, and, as above,
observe that for at least one, denoted by C2

|I2| =
∣∣∣∣
∫

C2

f(z) dz

∣∣∣∣ ≥ |I1|
4

≥ |I|
42

.

Continuing the process, we obtain a nested sequence of rectangles {Cn} (see
Figure 7.17), each satisfying the inequality

|In| =
∣∣∣∣
∫

Cn

f(z) dz

∣∣∣∣ ≥ |In−1|
4

≥ · · · ≥ |I|
4n

so that

|I| ≤ 4n|In| for n = 1, 2, 3, . . . . (7.23)

Figure 7.17.
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According to Lemma 2.25, there is exactly one point, call it z0, belonging to
all the rectangles. For each n, the point z0 is either on or inside the rectangle
Cn.

In particular, z0 is in the domain of analyticity of f(z). Hence given ε > 0,
there exists a δ > 0 such that

f ′(z0) =
f(z) − f(z0)

z − z0
− η(z), (7.24)

where |η(z)| < ε when |z − z0| < δ. Solving (7.24) for f(z) and integrating,
we get ∫

Cn

f(z) dz =
∫

Cn

{f(z0) + f ′(z0)(z − z0) + η(z)(z − z0)} dz (7.25)

=
∫

Cn

{f(z0) + f ′(z0)(z − z0)} dz

+
∫

Cn

η(z)(z − z0) dz,

which is valid for each n. The integrand of the first integral has a continuous
derivative in the entire complex plane. Thus Cauchy’s weak theorem may be
applied to obtain ∫

Cn

{f(z0) + f ′(z0)(z − z0)} dz = 0.

Therefore, (7.25) simplifies to

In =
∫

Cn

f(z) dz =
∫

Cn

η(z)(z − z0) dz.

Now choose n large enough so that Cn ⊂ N(z0; δ). Then

|In| =
∣∣∣∣
∫

Cn

η(z)(z − z0) dz

∣∣∣∣
≤

∫
Cn

|η(z)| |z − z0| |dz| ≤ ε

∫
Cn

|z − z0| |dz|.

Denote the length of the diagonal and the perimeter of Cn by Dn and Ln,
respectively. Then |z − z0| ≤ Dn for all z in Cn, and

|In| ≤ εDnLn = ε
D

2n

L

2n
=

εDL

4n
, (7.26)

where D and L denote, respectively, the length of the diagonal and the perime-
ter of C. Combining (7.26) with (7.23), we obtain

|I| ≤ 4n εDL

4n
= εDL.

Since ε was arbitrary, |I| = |
∫

C
f(z) dz| = 0 and the proof is complete.
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For instance, by Theorem 7.39, we have∫
C

2z2 + 1
(z + 3)5(z2 + 8)z3(z − 1)

dz = 0

where C is the positively oriented square with vertices 1 + i, 1 + 3i, 2 + 3i,
2 + i.

Corollary 7.40. Let f be continuous in a domain D containing a rectangle
C and its interior. Suppose that f is analytic in D\{a} for some point a ∈ D.
Then

∫
C

f(z) dz = 0.

Proof. It suffices to prove the theorem when a lies inside C. As before divide C
into n2 congruent rectangles Cjk (see Figure 7.18 for illustration when n = 4).
From the elementary properties of complex line integrals, we have∫

C

f(z) dz =
n∑

j=1

n∑
k=1

∫
Cjk

f(z) dz.

If a is neither an interior point nor a point of Cjk, then, by Theorem 7.39,∫
Cjk

f(z) dz = 0. On the other hand, if a is inside or on the rectangle Cjk,
then the M-L inequality shows that∣∣∣∣∣

∫
Cjk

f(z) dz

∣∣∣∣∣ ≤
∫

Cjk

|f(z)| |dz| ≤ M L(Cjk) =
ML(C)

n
,

where M = maxz∈C |f(z)|, L(Cjk) and L(C) represent the perimeter of Cjk

and C, respectively. Note that |f(z)| is a continuous function on the compact
set C, and the point a at the worst can belong to one of the four rectangles
Cjk. It follows that

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ =

∣∣∣∣∣∣
∑

a∈Cjk

∫
Cjk

f(z) dz

∣∣∣∣∣∣ ≤
∑

a∈Cjk

∣∣∣∣∣
∫

Cjk

f(z) dz

∣∣∣∣∣ ≤ 4ML(C)
n

.

Figure 7.18.
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Since n was arbitrary,
∣∣∫

C
f(z) dz

∣∣ = 0 and the proof is complete.

Let us pause for a moment to summarize what we have shown and where
we are headed. In the previous section, it was shown that for a function having
a continuous derivative in a domain, the integral around any closed contour
in the domain is zero, or, equivalently, the integral along any contour in the
domain depends only on the end points of the contour. The previous theorem
eliminates the requirement of continuity for the derivative when the contour
is a rectangle.

Our goal is to show that the rectangle in Theorem 7.39 may be replaced
by an arbitrary closed contour in the domain. This will be accomplished by
first showing that every continuous function having an antiderivative in a
domain also has the property that the integral is independent of path. Next
we will show that a function analytic in a disk has an antiderivative, and then
that a function analytic in a simply connected domain has an antiderivative.
Finally, Cauchy’s theorem will be extended to multiply connected domains
by “transforming” them into simply connected domains, as was done in the
previous section. We start with the following theorem which is an analogue of
the first fundamental theorem of calculus.

Theorem 7.41. (Fundamental Theorem of Integration) Let f(z) be con-
tinuous in a domain D, and suppose there is a differentiable function F (z)
such that F ′(z) = f(z) in D. Then for any contour C in D parameterized by
z(t), a ≤ t ≤ b, we have∫

C

f(z) dz = F (z(b)) − F (z(a)).

In particular, if C is closed then
∫

C
f(z) dz = 0.

Proof. Since F (z) has a continuous derivative in D, we get∫
C

f(z) dz =
∫

C

F ′(z) dz

=
∫ b

a

F ′(z(t))z′(t) dt

=
∫ b

a

d

dt
(F (z(t)) dt = F (z(b)) − F (z(a)),

the last equality following from the fundamental theorem of integral calculus.
If we use a more familiar notation z(a) = z0 and z(b) = z1, then the conclusion
may be expressed as ∫ z1

z0

f(z) dz = F (z1) − F (z0)

along any contour C in the domain having initial point z0 and terminal point
z1. If the contour is closed, then z(a) = z(b) = z0 so that
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C

f(z) dz =
∫ z0

z0

f(z) dz = F (z0) − F (z0) = 0.

Moreover, Theorem 7.41 is a consequence of the corresponding formula for
line integrals. Indeed, as F ′(z) = Fx = −iFy, it follows that

F (z1) − F (z0) =
∫ z1

z0

dF

=
∫ z1

z0

Fx dx + Fy dy

=
∫ z1

z0

F ′(z)(dx + i dy)

=
∫ z1

z0

F ′(z) dz =
∫ z1

z0

f(z) dz.

Example 7.42. The function f(z) = zn (n ∈ N) is continuous everywhere
and has an antiderivative F (z) = zn+1/(n + 1). Hence for any contour C in
the plane from z0 to z1,∫

C

zn dz =
∫ z1

z0

zn dz =
zn+1
1

n + 1
− zn+1

0

n + 1
.

In particular, if C is a closed curve (z0 = z1) then for each n ∈ N, we have
that

∫
C

f(z) dz = 0. More generally, if p(z) =
∑n

k=0 akzk is a polynomial,
then

P (z) =
n∑

k=0

ak

k + 1
zk+1 + c

is primitive of p(z), P ′(z) = p(z), and so∫ z1

z0

p(z) dz = P (z1) − P (z0).

In particular,
∫

C
p(z) dz = 0 if C is closed curve in C. •

Examples 7.43. By Theorem 7.41, we obtain the following:

(i) Clearly,
∫
|z|=1

csc2 z dz = 0. Indeed if f(z) = csc2 z, then F (z) = − cot z

has the property that F ′(z) = csc2 z and F (z) is analytic in C \ {nπ :
n ∈ Z}. In particular, f and F are analytic for 0 < |z| < π. Similarly,
we obtain that ∫

|z|=1

sec2 z dz = 0.

(ii) Suppose we wish to evaluate
∫

C
(z + a)ebz dz (b �= 0), where C is the

parabolic arc x2 = y from (0, 0) to (1, 1). First we note that if f(z) =
(z + a)ebz, then F (z) for which F ′(z) = f(z) is given by
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F (z) = (z + a)
ebz

b
− ebz

b2
=

ebz

b2
(b(z + a) − 1)

(which may be obtained by integrating (z + a)ebz by parts). Thus, by
Theorem 7.41, we have∫

C

(z + a)ebz dz = F (1 + i) − F (0).

Similarly,∫ 1

0

(z + a)ebz dz = F (1) − F (0) = (1 + a)
eb

b
− eb

b2
− a

b
+

1
b2

.

(iii) If C is the quarter circle |z| = 2 in the first quadrant joining 2 to 2i,
then, according to Theorem 7.41, we have∫

C

zn dz =
zn+1

n + 1

∣∣∣∣
2i

2

=
2n+1

n + 1
(in+1 − 1) (n ∈ Z \ {−1}). •

Theorem 7.41 looks deceptively similar to the fundamental theorem of
integral calculus. There is an important difference. The fundamental theorem
says that a continuous function f(x) defined on [a, b] has an antiderivative
F (x) satisfying∫ x1

x0

f(t) dt = F (x1) − F (x0) (a ≤ x0 < x1 ≤ b).

Theorem 7.41 merely asserts that if the continuous function f(z) has an an-
tiderivative, then the conclusion follows. That continuity is not a sufficient
condition for the existence of an antiderivative can be seen by the following
example.

Example 7.44. If the everywhere continuous function f(z) = z had an an-
tiderivative, then the conclusion of Theorem 7.41 would follow. But∫

|z|=1

z dz =
∫ π

−π

e−itieit dt = 2πi �= 0.

This shows that f(z) = z does not have an antiderivative. •
However, as seen in Example 7.42, Theorem 7.41 provides a powerful tool

for evaluating definite integrals. So, in order to evaluate
∫ z1

z0
f(z) dz, it suffices

to find a analytic function F (z) such that F ′(z) = f(z). But finding such an
F (z) is not always easy. For instance, if f(z) = sin(1/z) or cos(1/z), how do
we know whether F (z) exists or what precisely is F (z)?

We now examine the relationship between antiderivatives and analytic
functions. The following theorem, at least on the local level provides a condi-
tion which guarantees existence of the antiderivatives of a function (see also
Theorem 7.39).
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Theorem 7.45. (Cauchy’s theorem for a disk) Let f(z) be analytic in a
domain containing the closed disk |z − z0| ≤ r. Then

∫
|z−z0|=r

f(z) dz = 0.

Proof. In view of Theorem 7.41, it suffices to find a function F (z) such that
F ′(z) = f(z) for |z − z0| ≤ r. Choose any point z = x + iy in the disk and let
C1 be the contour consisting of the horizontal line segment from z0 = x0 + iy0

to x+ iy0 followed by the vertical line segment from x+ iy0 to x+ iy. Also, let
C2 be the contour consisting of the vertical line segment from z0 = x0 + iy0

to x0 + iy followed by the horizontal line segment from x0 + iy to x + iy (see
Figure 7.19).

Figure 7.19.

By Theorem 7.39 and basic properties of integrals,∫
C1−C2

f(z) dz =
∫

C1

f(z) dz −
∫

C2

f(z) dz = 0. (7.27)

Define

F (z) =
∫

C1

f(z) dz =
∫ x

x0

f(t + iy0) dt +
∫ y

y0

f(x + it)i dt. (7.28)

In view of (7.27), F (z) may also be expressed as

F (z) =
∫

C2

f(z) dz =
∫ y

y0

f(x0 + it)i dt +
∫ x

x0

f(t + iy) dt. (7.29)

Taking the partial derivative of F (z) with respect to y in (7.28), we obtain
(since the first term in right side of (7.28) is independent of y)

∂F

∂y
= i

∂

∂y

(∫ y

y0

f(x + it) dt

)
= if(x + iy) = if(z); (7.30)

(here the fundamental theorem of calculus is applied to
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y0

g(x, t) dt =
∫ y

y0

u(x, t) dt + i

∫ y

y0

v(x, t) dt, g = u + iv).

Similarly, taking the partial derivative of F (z) with respect to x in (7.29), we
have (since the first term in (7.29) is independent of x)

∂F

∂x
=

∂

∂x

(∫ x

x0

f(t + iy) dt

)
= f(x + iy) = f(z); (7.31)

(again this is a consequence of the fundamental theorem of calculus). In view
of (7.30) and (7.31),

Fx(z) = −iFy(z) = f(z). (7.32)

But (7.32) is just the Cauchy–Riemann equations for F (z). Furthermore, the
continuity of partials Fx and Fy on the disk follows from the continuity of
f(z). Hence Theorem 5.17 may be applied to establish the analyticity of F
at z. Since z was arbitrary, F (z) is analytic in the disk |z − z0| ≤ r. Finally,
from (5.5), we conclude that F ′(z) = Fx(z) = f(z), i.e., F is a primitive of f
in the disk |z − z0| ≤ r.

Corollary 7.46. Let f be analytic for |z − z0| < r except at some point a
inside the disk and continuous for |z − z0| ≤ r. Then

∫
|z−z0|=r

f(z) dz = 0.

Proof. Follows if we combine Corollary 7.40 and Theorem 7.45.

A circle has the property that any point inside can be joined to the cen-
ter by two distinct broken line segments, which, when taken together, form
the perimeter of a rectangle whose sides are parallel to the coordinate axes.
Furthermore, this is the only property that was used in going from Cauchy’s
theorem for a rectangle to Cauchy’s theorem for a circle. In a more general
domain, no such construction is possible; however according to Remark 2.1,
every pair of points in a domain D can be joined by a polygonal line lying in
D (with sides parallel to the coordinate axes). In Ahlfors [A], it is shown that
if the domain is simply connected, then two such polygonal lines C1 and C2

can be constructed so that their difference C1−C2 consists of a finite number
of boundaries of rectangles traversed alternately in the positive and negative
directions, as illustrated in Figure 7.20.

This fact will be used in proving our main theorem.

Theorem 7.47. (Cauchy’s Theorem) If f(z) is analytic in a simply con-
nected domain D and C is a closed contour lying in D, then

∫
C

f(z) dz = 0.

Proof. According to Theorem 7.41, it suffices to find a function F (z) such
that F ′(z) = f(z) in the simply connected domain D. Fix a point z0 in D
and choose an arbitrary z in D. Then with C1 and C2 constructed as in
Figure 7.20, we define F (z) by
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F (z) =
∫

C1

f(z) dz.

According to Theorem 7.31,∫
C1−C2

f(z) dz =
∫

C1

f(z) dz −
∫

C2

f(z) dz = 0,

because the integral around each rectangle is zero. Hence, we also have

F (z) =
∫

C2

f(z) dz.

Suppose z1 = x1+iy1 is the last point of intersection of C1 and C2 between
z0 and z = x + iy. Also suppose that, in this last rectangle, C1 consists of
the horizontal followed by the vertical line, whereas C2 consists of the vertical
followed by the horizontal, as shown in Figure 7.20.

Figure 7.20.

In view of Theorem 7.39, the value for the integral of f(z) from z0 to z1

is the same along both the contours C1 and C2, and we denote their common
value by K. The remainder of the proof is similar to that of Theorem 7.45,
for we have

F (z) =
∫

C1

f(z) dz = K +
∫ x

x1

f(t + iy1) dt +
∫ y

y1

f(x + it)i dt (7.33)

and

F (z) =
∫

C2

f(z) dz = K +
∫ y

y1

f(x1 + it)i dt +
∫ x

x1

f(t + iy) dt. (7.34)

From (7.33), we get
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∂F

∂y
=

∂

∂y

(∫ y

y1

f(x1 + it) dt

)
= if(x + iy) = if(z)

and, from (7.34),

∂F

∂x
=

∂

∂x

(∫ x

x1

f(t + iy) dt

)
= f(x + iy) = f(z).

Hence

Fx(z) = −iFy(z) = f(z). (7.35)

Equation (7.35) represents the Cauchy–Riemann equations for F (z). The par-
tials of F (z) are continuous because f(z) is continuous. Therefore, F (z) is
analytic in D, with F ′(z) = Fx(z) = f(z) in D.

Remark 7.48. The topological notions utilized in the proof of Theorem 7.47
allowed us to deal with finitely many rectangles inside the simply connected
domain, from whence Theorem 7.39 was applicable. But the essence of The-
orem 7.39 consisted of “shrinking” a rectangle to a point. Consequently,
Cauchy’s theorem ultimately relies on the fact that

∫ z0

z0
f(z) dz = 0. •

Theorem 7.36, which generalized Cauchy’s “weak” theorem (Theorem
7.33) from simply to multiply connected domains, was purely topological in
nature, and nowhere used the continuity of the partials. Hence, Cauchy’s the-
orem is also valid for a multiply connected region, the proof consisting of
“transforming” a multiply connected region into a simply connected region,
as in the proof of Theorem 7.36. We remark that if the contour encloses
singularities of the function, we cannot use Cauchy’s theorem. For example,
consider

I =
∫

C

1
(z − 1)2

dz

along a simple closed contour having the point 1 as an interior point. Note
that F (z) = −1/(1−z) is an antiderivative of f(z) = (z−1)−2 for z ∈ C\{1}.
According to Theorem 7.41, I = 0. But Theorem 7.47 is not applicable. On
the other hand, for example, if

f(z) =
sin z

(z − 1)2
or

ez

(z − 1)2
,

then it is not clear whether these functions have antiderivatives. To cover
a situation like this, we need to develop another theorem called Cauchy’s
integral formula which we shall do in Chapter 8. Its extension in the form of
the Residue theorem will be discussed in Chapter 9. On the other hand, for
certain situations the following theorem is helpful to simplify the problem by
replacing the given contour by another, or others.
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Theorem 7.49. (Cauchy’s Theorem for multiply connected domains) Let
D be a multiply connected domain bounded externally by a simple closed
contour C and internally by n simple closed nonintersecting contours C1,
C2, . . . , Cn. Let f be analytic on D ∪ C ∪ C1 ∪ C2 ∪ · · · ∪ Cn. Then

∫
C

f(z) dz =
n∑

k=1

∫
Ck

f(z) dz

where C is taken counterclockwise around the external boundary C and clock-
wise around the internal boundaries C1, C2, . . . , Cn.

This generalization of Cauchy’s theorem aids us in evaluating integrals
along a contour enclosing a region in which the function is not analytic.

First we evaluate
∫

C
(z − z0)−1 dz along a simple closed contour C having

z0 is an interior point.
For some ε > 0, the circle C : |z − z0| = ε is interior to the contour C.

Also, the function f(z) = 1/(z − z0) is analytic in the multiply connected
region between C and |z − z0| = ε (see Figure 7.21). Hence

0 =
∫

C+C1

1
z − z0

dz =
∮

C

1
z − z0

dz +
∮

C1

1
z − z0

dz.

Therefore, ∮
C

1
z − z0

dz = −
∮

C1

1
z − z0

dz =
∮
−C1

1
z − z0

dz.

Note that the positive orientation of C1 is clockwise so that the positive
orientation of −C1 is counterclockwise. Parameterizing −C1 by z(t) = εeit,
0 ≤ t ≤ 2π, we have∮

C

1
z − z0

dz =
∮
−C1

1
z − z0

dz =
∫ 2π

0

z′(t)
z(t)

dt =
∫ 2π

0

iεeit

εeit
dt = 2πi.

Figure 7.21.
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Thus the validity of Cauchy’s theorem for multiple connected regions takes
the worry out of parameterizing ugly contours. The method used in the above
example shows that

∮
C

(z−z0)−1 dz = 2πi or 0 according to whether the point
z0 is inside or outside the simple closed contour C. No additional information
is required in order to evaluate the integral. On the other hand, for n ∈ N\{1}
the function f(z) = (z − z0)−n is not analytic at z0 and for the same contour
C, we can easily see that ∮

C

1
(z − z0)n

dz = 0.

Observe that this result does not contradict Theorem 7.47. Note also that in
all these cases, the value of the integral does not depend on the radius ε, as
long as C1 lies inside C.

We now illustrate Theorem 7.49 by evaluating the integral

I =
∫
|z|=4

f(z) dz, f(z) =
1

z2 + 4
.

Letting C1 = {z : |z − 2i| = 1} and C2 = {z : |z + 2i| = 1}, we have, by
Theorem 7.49,

I =
∫

C1

f(z) dz +
∫

C2

f(z) dz

=
1
4i

∫
C1

(
1

z − 2i
− 1

z + 2i

)
dz +

1
4i

∫
C2

(
1

z − 2i
− 1

z + 2i

)
dz

=
1
4i

(2πi + 0) +
1
4i

(0 − 2πi) = 0.

Similarly, one can easily show that∫
C

dz

z2 + r2
= 0 =

∫
C

dz

z2 − r2
(r > 0)

where C is the positively oriented circle |z| = r + 1/2.

Example 7.50. We wish to evaluate the integral∫
|z|=2

dz

z3 − 3
.

This integral may be evaluated without using Cauchy’s residue theorem which
will be discussed in Chapter 9. Define D = {z : 2 < |z| < R}. Then, f(z) =
1/(z3 − 3) is analytic in D for each R > 2. By Cauchy’s theorem for multiply
connected domains, ∫

|z|=2

dz

z3 − 3
=

∫
|z|=R

dz

z3 − 3
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and the value of the integral must be independent of R. By the M-L Inequality,∣∣∣∣∣
∫
|z|=R

dz

z3 − 3

∣∣∣∣∣ ≤ 2πR

R3 − 3
→ 0 as R → ∞

which shows that the value of the given integral is 0. The same argument may
be used for similar integrals. For example, we see that∫

|z|=2

dz

1 + z + z2 + z3
= 0.

Note that (1 + z + z2 + z3)−1 = (1 − z)/(1 − z4).

Cauchy’s theorem for multiply connected regions cannot be proved di-
rectly by the same method as was used for simply connected regions, because
analytic functions need not have (single-valued) analytic antiderivatives in
multiply connected domains. In the above example, log(z− z0) is the analytic
antiderivative of 1/(z − z0) only when confined to a branch. This concept of
analytic logarithm in simply connected domains is made more explicit in the
following theorem.

Theorem 7.51. If f(z) is analytic and nonzero in a simply connected domain
D, then there exists a function g(z), analytic in D, such that eg(z) = f(z).

Proof. Since f(z) never vanishes in D, the function f ′(z)/f(z) is analytic in
D. Furthermore, the integral of f ′(z)/f(z) between any two points in D is
independent of the path in the simply connected domain D. We define g(z)
by the formula

g(z) =
∫ z

z0

f ′(ζ)
f(ζ)

dζ + Log f(z0), (7.36)

where z0 is fixed point in D, z is an arbitrary point in D, and the path of
integration is any path that lies in D. Set h(z) = f(z)e−g(z), and observe that

h′(z) = f ′(z)e−g(z) − f(z)g′(z)e−g(z)

= f ′(z)e−g(z) − f(z)
f ′(z)
f(z)

e−g(z)

= 0.

Thus h(z) is a constant in D. To determine the constant, we set z = z0 to
obtain

h(z0) = f(z0)e−g(z0) = f(z0)e−Log f(z0) = 1.

Therefore, f(z)e−g(z) ≡ 1 throughout D, and the theorem is proved.

To see that the hypothesis that the domain be simply connected is es-
sential, observe that 1/z never vanishes in the punctured plane and cannot
be expressed as eg(z) for an analytic function g(z). (Recall that no branch of
− log z is analytic in the punctured plane.)
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Corollary 7.52. If f(z) is analytic and nonzero in a simply connected domain
D, then an analytic branch of (f(z))1/n (n a positive integer) can be defined
in D.

Proof. Set f(z) = eg(z), where g(z) is analytic in D, and the existence
of g provided in Theorem 7.51. Define the nth root function (f(z))1/n by
(f(z))1/n = e(1/n)g(z).

Remark 7.53. More generally, each of the n functions e(g(z)+2kπi)/n (k =
0, 1, 2, . . . , n − 1) is an analytic branch of (f(z))1/n. •

We end this section with an example.

Example 7.54. Consider∫
|z|=1

f(z) dz, f(z) = 1/z1/2.

Then z = 0 is a branch point of f(z). If we choose principal branch, then

z1/2 = e(1/2) Log z = e(1/2)(ln |z|+iArg z)

so that for z = eiθ, we have z1/2 = ei(1/2)Arg z = e(1/2)iθ and∫ π

−π

ieiθ

eiθ/2
dθ = i

∫ π

−π

e−iθ/2 dθ = 4i.

If C is the line segment [1, 1 + i] connecting 1 and 1 + i, and if we choose the
principal branch for z1/2, then we have F (z) = z1/2 = e(1/2) Log z, and so

F ′(z) = e(1/2) Log z 1
2z

=
1
2

e(1/2) Log z

eLog z
=

1
2

1
e(1/2) Log z

=
1
2
f(z)

where F is analytic on C \(−∞, 0] with F ′(z) = f(z). Using this we compute
that ∫

C

dz

z1/2
= 2

∫
C

F ′(z) dz = 2 [F (1 + i) − F (1)] = 2 [21/4eiπ/8 − 1]. •
Questions 7.55.

1. If f(z) is analytic in a domain and C is a closed contour in the domain,
does

∫
C
|f(z)| dz = 0? Does

∫
C

f(z) |dz| = 0?
2. Where in the proof of Theorem 7.47 did we use the fact that the domain

was simply connected?
3. Suppose f(z) is analytic on a contour C. Does

∫
C

f(z) dz = 0?
4. If f is continuous on the contour C, is

∫
C

f(z) dz = −
∫
−C

f(z) dz?
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5. For what type of simple closed contours, is∫
γ

(1 + z + z2 + · · · + zn)−1 dz = 0?

6. What is the relationship between Theorem 7.41 and Green’s theorem?
7. Where, in the proof of Theorem 7.45, was the hypothesis of analyticity

needed?
8. What are the differences between Cauchy’s theorem and Cauchy’s weak

theorem?
9. What can be said about

∫
C

(1/z) dz if the contour C passes through the
origin?

10. What values may be assumed by
∫

C
(1/z) dz if C is a closed curve that

is not simple?
11. Is the function g(z) in Theorem 7.51 unique?
12. What is an antiderivative of cos(z2)? of sin(z2)? Is it possible to use

Theorem 7.41 to conclude that
∫

C
sin(z2) dz = 0 for any simple closed

contour C?
13. What is a domain D of analyticity of f(z) = z(z − 1)1/2? Find an

antiderivative of f in D?
14. When can a contour integral

∫
C

f(z) dz be independent of the path?
15. What is a complex version of the fundamental theorem of calculus?
16. Let C be a closed contour. Does

∫
C

z dz = 0? Does Re
∫

C
z dz = 0?

Does
∫

C
(Re z) dz = 0? Does Im

∫
C

z dz = 0? Does
∫

C
(Im z) dz = 0?

Exercises 7.56.

1. Evaluate
∫ i

−i
|z| dz along different contours. Does |z| have an antideriva-

tive?
2. Evaluate

∫
γ

f(z) dz, where
(i) f(z) = z3 and γ(t) = t2 + it for t ∈ [0, π]
(ii) f(z) = sin z and γ(t) = t + it2 for t ∈ [0, π/2]
(iii) f(z) = 1/z and γ(t) = cos t2 − i sin t for t ∈ [0, π/2]
(iv) f(z) = 1/z and γ(t) = − cos t − ie sin t for t ∈ [0, π/2].

3. Give an example of a function f(z) for which
∫
|z|=r

f(z) dz = 0 for each
r > 0 even though f(z) is not analytic everywhere.

4. Let f = u+iv be analytic inside and on a simple closed contour γ. Show
by an example that Cauchy’s theorem does not hold separately for the
real and imaginary parts of f .

5. Find
∫

C
(1 + z2)−1 dz, where C is the circle

(a) |z − i| = 1 (b) |z + i| = 1 (c) |z| = 2 (d) |z − 1| = 1.

6. Separate the integrand into real and imaginary parts and evaluate,
where possible, the expression

∫
C

(ez/z) dz, where C is

(a) |z| = 1 (b) |z−2| = 1 (c) the square having vertices ±1 ± i.
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7. Suppose Re z0 > 0 and Re z1 > 0. Evaluate
∫ z1

z0
(1/z) dz along contours

in the right half-plane.
8. Let a, b ∈ C and r > 0. Then, by decomposing the integrand into partial

fractions, show that

∫
|z|=r

dz

(z − a)(z − b)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if |a| > r and |b| > r (a, b �= 0)
0 if |a| < r and |b| < r (a, b ∈ C)

2πi

a − b
if |a| < r < |b|

2πi

b − a
if |b| < r < |a|.

9. Suppose that f is analytic for |z| < 2 and α is a complex constant.
Evaluate

I =
∫
|z|=1

(Re z + α)
f(z)

z
dz.

10. Evaluate
∫ z2

z1
az dz (a �= 0 is given).

11. Find
∫
|z|=1

f(z) dz, when

(a) f(z) = (z sin z)/(z + 2) + z (b) f(z) = z4 + iz + 2Im z.
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Applications of Cauchy’s Theorem

Most of the powerful and beautiful theorems proved in this chapter have
no analog in real variables. While Cauchy’s theorem is indeed elegant, its
importance lies in applications. In this chapter, we prove several theorems that
were alluded to in previous chapters. We prove the Cauchy integral formula
which gives the value of an analytic function in a disk in terms of the values
on the boundary. Also, we show that an analytic function has derivatives of all
orders and may be represented by a power series. The fundamental theorem
of algebra is proved in several different ways. In fact, there is such a nice
relationship between the different theorems in this chapter that it seems any
theorem worth proving is worth proving twice.

8.1 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D, then we know already that∫
C

f(z) dz = 0 along every closed contour C contained in D. An interesting
variation occurs when a function is analytic at all but a finite number of
points. As we have seen in the previous chapter,∫

C

1
z − z0

dz = 2πi (8.1)

along every positively oriented simple closed contour C containing z0. We now
develop the Cauchy integral formula which is indeed a generalization of (8.1).
Moreover, Cauchy’s integral formula leads to three important properties of
analytic functions that are unparalleled in real variable methods:

• every analytic function is infinitely differentiable, see Theorem 8.3;
• every analytic function can be expressed locally as a Taylor series in the

vicinity of a point of analyticity, see Theorem 8.8;
• every analytic function can be expressed as a Laurent series in the vicin-

ity of an isolated singularity, see Section 9.2.
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These facts hinge on the following result.

Theorem 8.1. (Cauchy’s First Integral Formula) Let f(z) be analytic in
a simply connected domain containing the simple closed contour C. If z0 is
inside C, then

f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz.

Proof. Given ε > 0, construct a circle Cr : |z − z0| = r inside C and small
enough so that |f(z) − f(z0)| < ε for all z on Cr. According to Cauchy’s
theorem for multiply connected regions,∫

C

f(z)
z − z0

dz =
∫

Cr

f(z)
z − z0

dz.

Thus, writing f(z) = f(z0) + (f(z) − f(z0)) for the integral on the right, one
has∫

C

f(z)
z − z0

dz =
∫

Cr

f(z0)
z − z0

dz +
∫

Cr

f(z) − f(z0)
z − z0

dz

= 2πif(z0) +
∫

Cr

f(z) − f(z0)
z − z0

dz, since
∫

Cr

1
z−z0

dz = 2πi.

Since the integral in the left side has a fixed value, as does 2πif(z0), it follows
that for each Cr, the value of the contour integral∫

Cr

f(z) − f(z0)
z − z0

dz

is constant. We now show that this value must be zero. We have∣∣∣∣
∫

Cr

f(z) − f(z0)
z − z0

dz

∣∣∣∣ ≤
∫

Cr

|f(z) − f(z0)|
|z − z0|

|dz| <
ε

r
(2πr) = 2πε.

Since ε is arbitrary, the integral is zero. This concludes the proof.

Remark 8.2. When f(z) ≡ 1, the conclusion of the theorem reduces to (8.1).
Moreover, Theorem 8.1 expresses the value of f(z) at any point inside C in
terms of its values on C. In other words, if f(z) is known to be analytic inside
and on the boundary of a simply connected domain, then the values of f(z)
on the boundary completely determine the values of f(z) inside. There is no
analog to this theorem for functions of a real variable. More precisely, when
a real-valued function f(x) is differentiable on the closed interval [a, b], its
value at x = a and x = b in no way can dictate the value of f(x) on the open
interval (a, b). For instance, for each n ∈ N, the functions

fn(x) = xn, 0 ≤ x ≤ 1,

all have the same boundary values (f(0) = 0, f(1) = 1) but differ from one
another at all interior points. Similarly, we see that when a function f(x, y) of
two real variables x, y real differentiable inside and on a simple closed contour
C, its value on C do not determine the values of f(x, y) inside C. •



8.1 Cauchy’s Integral Formula 245

We next express the derivative of an analytic function in terms of an
integral. Using the notation of Theorem 8.1, choose h small enough in absolute
value so that z0 + h is inside C. Then,

f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz and f(z0 + h) =
1

2πi

∫
C

f(z)
z − (z0 + h)

dz.

Hence, for h �= 0,

f(z0 + h) − f(z0)
h

=
1

2πih

∫
C

(
1

z − z0 − h
− 1

z − z0

)
f(z) dz (8.2)

=
1

2πi

∫
C

f(z)
(z − z0 − h)(z − z0)

dz.

When h → 0, the integrand approaches f(z)/(z − z0)2. It appears probable
that the limit is

1
2πi

∫
C

f(z)
(z − z0)2

dz,

although in general the limit of the integrand is not necessarily the same as
the integrand of the limit. To prove that we may take the limit inside the
integral, we must show that the difference∣∣∣∣ 1

2πi

∫
C

f(z)
(z − z0 − h)(z − z0)

dz − 1
2πi

∫
C

f(z)
(z − z0)2

dz

∣∣∣∣ (8.3)

=
∣∣∣∣ h

2πi

∫
C

f(z)
(z − z0 − h)(z − z0)2

dz

∣∣∣∣
can be made arbitrarily small. Given a circle C1 : |z − z0| = r contained
in C, choose h small enough so that |h| ≤ r/2 (see Figure 8.1). Note that
z0 ∈ Int (C1) and

|z0 + h − z0| < r/2 ⇐⇒ |h| < r/2,

Figure 8.1.
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which shows that z0 + h ∈ Int (C1). Further, for z ∈ C1, we have

|z − z0 − h| ≥ |z − z0| − |h| ≥ r − |h| ≥ r − r/2 > 0

and so, by Cauchy’s theorem for multiply connected domains, we have∫
C

f(z)
(z − z0 − h)(z − z0)2

dz =
∫

C1

f(z)
(z − z0 − h)(z − z0)2

dz.

Since f(z) is continuous on C1, it is bounded (say |f(z)| ≤ M on C1). Thus∣∣∣∣ h

2πi

∫
C1

f(z)
(z − z0 − h)(z − z0)2

dz

∣∣∣∣ ≤ |h|
2π

∫
C1

|f(z)|
|z − z0 − h| |z − z0|2

|dz|

≤ |h|M
2πr2

∫
C1

|dz|
|z − z0| − |h|

≤ |h|M
πr3

∫
C1

|dz|

=
|h|M
πr3

(2πr) = |h|
(

2M

r2

)
.

Clearly, the limit of this expression as h → 0 is zero and so, (8.3) tends to
zero with h. In view of (8.2) and (8.3),

f ′(z0) = lim
h→0

1
2πi

∫
C

f(z)
(z − z0 − h)(z − z0)

dz (8.4)

=
1

2πi

∫
C

f(z)
(z − z0)2

dz.

Equation (8.4) expresses the value of f ′(z) at any point inside C in terms
of the values of f(z) on C. Moreover, (8.4) shows that the operations of
differentiation and contour integration can be interchanged. We knew, by
hypothesis, that f(z) was differentiable at all points inside C. But the above
process can be repeated. From (8.4), we obtain

f ′(z0 + h) − f ′(z0)
h

=
1

2πi

∫
C

{2(z − z0) − h}f(z)
(z − z0)2(z − z0 − h)2

dz. (8.5)

As before, we can show that the limit may be taken inside the integral so that
(8.5) leads to

f ′′(z0) =
2

2πi

∫
C

f(z)
(z − z0)3

dz. (8.6)

Equation (8.6) gives much more information than we had a right to expect.
First, we have the existence of f ′′(z) at all points inside C. Next, the second
derivative may be expressed in terms of the values of f(z) on C. This argument
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can be repeated indefinitely. An induction shows that the nth derivative is
given by

f (n)(z0) =
n!
2πi

∫
C

f(z)
(z − z0)n+1

dz. (8.7)

To see this, we assume that (8.7) holds for n = k ≥ 1. Then

f (k)(z0) =
k!
2πi

∫
C

f(z)
(z − z0)k+1

dz.

We must show that f (k+1)(z0) exists and the formula (8.7) holds for n = k+1.
To do this, we use the binomial expansion

(z−z0−h)k+1 = (z−z0)k+1−(k+1)(z−z0)kh+
(k + 1)k

2
(z−z0)k−1h2− · · ·

to express

1
(z − (z0 + h))k+1

− 1
(z − z0)k+1

=
(z − z0)k+1 − (z − z0 − h)k+1

(z − z0)k+1(z − z0 − h)k+1

=
(k + 1)h

(z − z0)(z − z0 − h)k+1
− (k + 1)k

2
h2

(z − z0)2(z − z0 − h)k+1
+ · · ·

where the dots indicate terms with powers of h up to hk+1. In view of this
expression,

f (k)(z0 + h) − f (k)(z0)
h

=
k!
2πi

∫
C

f(z)
z − z0

[
k + 1

(z − z0 − h)k+1
+ O(h)

]
dz.

Letting h → 0, we obtain (8.7) for n = k + 1,

f (k+1)(z0) =
(k + 1)!

2πi

∫
C

f(z)
(z − z0)k+2

dz.

Hence, every analytic function has derivatives of all orders and derivatives of
all orders at each point may be expressed in terms of the values of the function
on its boundary. We sum up this remarkable result with

Theorem 8.3. (Generalized Cauchy’s Integral Formula) Let f(z) be ana-
lytic in a simply connected domain containing the simple closed contour C.
Then f(z) has derivatives of all orders at each point z0 inside C, with

f (n)(z0) =
n!
2πi

∫
C

f(z)
(z − z0)n+1

dz.
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Remark 8.4. While Theorem 8.3 is stated as a global property, a property
of simply connected domains, it is really a local property. Since a function
analytic at a point is also analytic in a (simply connected) neighborhood of
the point, it follows that a function analytic at a point must have derivatives
of all orders at that point. •

Note how this result is radically different from the theory of functions of
a real variable. In basic calculus, we have learned that the existence of the
derivative of f(x) does not guarantee the continuity of the derivative f ′(x),
much less the differentiability of f ′(x), see the example on p. 134. Now, we
consider the function

f(x) = x7/5

which has a first derivative for all x ∈ R and

f ′(x) = (7/5)x2/5.

Observe that f ′(x) does not have a first derivative at x = 0 and therefore,
f(x) does not have a second derivative at the origin. Similarly, f(x) = x11/5

has a first and second derivative on R but has no third derivative at x = 0. It
follows that the existence of n derivatives of a real-valued function f(x) does
not guarantee the (n + 1)th derivative of f(x). Thus, Theorem 8.3 does not
hold in the case of functions of a real variable.

This example demonstrated one essential difference between functions of
a complex variable and functions of a real variable.

Remark 8.5. Cauchy’s integral formula is also valid for multiply connected
regions. We prove it for the multiply connected region in Figure 8.2. In the
exercises, the reader is asked to supply the general proof. •

Figure 8.2.

Suppose f(z) is analytic in the multiply connected region R whose bound-
ary consists of the contour C = C1 ∪C2. Construct a circle Γ contained in R
and having center at z0. Then by Cauchy’s theorem for multiply connected
regions,
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1
2πi

∮
C1

f(z)
z − z0

dz +
1

2πi

∮
C2

f(z)
z − z0

dz +
1

2πi

∮
Γ

f(z)
z − z0

dz = 0.

Thus, in view of Theorem 8.1,

f(z0) =
1

2πi

∮
Γ

f(z)
z − z0

dz

=
1

2πi

∮
C1

f(z)
z − z0

dz − 1
2πi

∮
C2

f(z)
z − z0

dz.

That is,

f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz,

and this proves Theorem 8.1 for the multiply connected region R. Similarly,
we can show that the conclusion of Theorem 8.3 remains valid for the mul-
tiply connected region R (see Figure 8.2). Next we have an immediate and
important corollary to Theorem 8.3.

Corollary 8.6. If f = u + iv is analytic in a domain D, then all partial
derivatives of u and v exist and are continuous in D.

Proof. Let f = u + iv be analytic in D. Then, by (5.3),

f ′(z) = ux + ivx = vy − iuy.

By the analyticity of f ′(z), it follows that each of the first partial derivatives
of u and v exist and are continuous in D because f ′(z) is continuous in D.
Because f ′(z) is analytic in D, from the above equation, we again have

f ′′(z) = uxx + ivxx

= (vx)y − i(ux)y

= (vy)x − i(uy)x.

This process may be continued to conclude that u and v have continuous
partial derivatives of all orders at each point where the function f = u + iv is
analytic.

Example 8.7. Setting f(z) = z − 3 cos z, we compute∫
|z|=2

z − 3 cos z

(z − π/2)2
dz = 2πif ′

(π

2

)
= 8πi. •

We are now able to prove Taylor’s theorem for complex functions.

Theorem 8.8. (Taylor’s Theorem) Let f(z) be analytic in a domain D
whose boundary is C. If z0 is a point in D, then f(z) may be expressed as
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f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n

and the series converges for |z − z0| < δ, where δ is the distance from z0 to
the nearest point on C.

Proof. Construct a circle C1 having center at z0 and radius ρ, ρ < δ. Let z be
any point inside C1. By Cauchy’s integral formula,

f(z) =
1

2πi

∫
C1

f(ζ)
ζ − z

dζ. (8.8)

Set |z − z0| = r. Then r = |z − z0| < |ζ − z0| = ρ (see Figure 8.3), and

1
ζ − z

=
1

ζ − z0

(
1

1 − (z − z0)/(ζ − z0)

)
(8.9)

=
1

ζ − z0

(
1 +

z − z0

ζ − z0
+

(
z − z0

ζ − z0

)2

+ · · ·

+
(

z − z0

ζ − z0

)n−1

+
((z − z0)/(ζ − z0))n

1 − (z − z0)/(ζ − z0)

)
.

In view of (8.8), we may multiply (8.9) by f(ζ) and integrate to obtain

f(z) =
1

2πi

∫
C1

f(ζ)
ζ − z0

dζ +
(z − z0)

2πi

∫
C1

f(ζ)
(ζ − z0)2

dζ + (8.10)

+ · · · +
(z − z0)n−1

2πi

∫
C1

f(ζ)
(ζ − z0)n

dζ + Rn,

where

Rn =
1

2πi

∫
C1

(
z − z0

ζ − z0

)n
f(ζ)
ζ − z

dζ.

But by Cauchy’s integral formula, (8.10) may be expressed in the form

f(z) = f(z0) + f ′(z0)(z − z0) + · · · +
f (n−1)(z0)
(n − 1)!

(z − z0)n−1 + Rn.

The result follows if we can show that the remainder term Rn approaches zero
as n approaches ∞. Suppose |f(z)| ≤ M on C1 (see Figure 8.3). Then

Rn ≤ 1
2π

∫
C1

∣∣∣∣z − z0

ζ − z0

∣∣∣∣
n ∣∣∣∣ f(ζ)

ζ − z

∣∣∣∣ |dζ| ≤ M

2π

(
r

ρ

)n ∫
C1

1
|ζ − z| |dζ|. (8.11)

Starting with the inequality

1
|ζ − z| =

1
|ζ − z0 − (z − z0)|

≤ 1
|ζ − z0| − |z − z0|

=
1

ρ − r
,
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0

0
1

Figure 8.3.

(8.11) leads to

Rn ≤ M

2π(ρ − r)

(
r

ρ

)n ∫
C1

|dζ| =
Mρ

ρ − r

(
r

ρ

)n

.

Since r < ρ, (r/ρ)n → 0 as n → ∞. Thus,

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n,

and the proof is complete.

Remark 8.9. By the M -test (Theorem 6.31), the Taylor series for f(z) also
converges uniformly on compact subsets of |z − z0| < δ. •

In Section 6.3, we saw that a power series represents an analytic function
inside its circle of convergence. Theorem 8.8 is essentially the converse. Thus,
a function f(z) is analytic at a point z0 if and only if f(z) =

∑∞
n=0 an(z−z0)n

in some disk |z − z0| ≤ r, where

an =
f (n)(z0)

n!
=

1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1

dz.

Theorem 8.8 justifies the Maclaurin expansion

ez =
∞∑

n=0

zn

n!
, sin z =

∞∑
n=0

(−1)n

(2n − 1)!
z2n−1, cos z =

∞∑
n=0

(−1)n

(2n)!
z2n

that were stated, without proof, in Chapter 6 (see also the Examples below).

Examples 8.10. (i) Consider f(z) = sin z. Then f is entire. Also, for each
n ∈ N, we have f ′(z) = cos z = sin(z + π/2) and
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f ′′(z) = cos(z + π/2) = sin(z + π/2 + π/2) = sin(z + π).

Consequently, f (n)(z) = sin(z + nπ/2) and so

f (n)(0) = sin(nπ/2) =
{

0 if n = 2k
(−1)k if n = 2k + 1 , k ∈ N0.

It follows that

sin z = z − z3

3!
+

z5

5!
− · · · =

∞∑
n=1

(−1)n+1

(2n − 1)!
z2n−1, z ∈ C. (8.12)

A similar method gives that

cos z = 1 − z2

2!
+

z4

4!
− · · · =

∞∑
n=1

(−1)n

(2n)!
z2n, z ∈ C. (8.13)

Also, it is much easier to use (8.12), and the relation d
dz (sin z) = cos z

to achieve (8.13), because of Theorem 6.51.
(ii) Suppose we wish to find the Taylor expansion of f(z) = ez about the

point z = 1. We could of course, begin by computing the coefficients
using the formula for an in Theorem 8.8. To avoid this, we may simply
rewrite

f(z) = ez−1+1 = eez−1 = e

∞∑
n=0

(z − 1)n

n!
, |z − 1| < ∞,

because of the known series expansion for ez.
(iii) To find the Taylor expansion for f(z) = zez about a point z = a, we

may simply rewrite

f(z) = (z − a + a)ez−a+a

= ea[(z − a)ez−a + aez−a]

= ea

[ ∞∑
n=0

(z − a)n+1

n!
+ a + a

∞∑
n=1

(z − a)n

n!

]
, |z − a| < ∞,

= ea

[ ∞∑
n=1

(z − a)n

(n − 1)!
+ a + a

∞∑
n=1

(z − a)n

n!

]

= ea

[
a +

∞∑
n=1

n + a

n!
(z − a)n

]
, for all z ∈ C.

For instance if a = 1, it follows that

zez = e

[
1 +

∞∑
n=1

n + 1
n!

(z − 1)n

]
for all z ∈ C.
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(iv) To find the Taylor expansion for 1/z about a �= 0, we simply follow the
above path, namely,

1
z

=
1

a + z − a
=

1
a

[
1

1 + (z − a)/a

]
=

1
a

∞∑
n=0

(−1)n

an
(z − a)n

which is valid for |z − a| < |a|. For example, for a = i,−i, one has

• 1
z

=
1
i

∞∑
n=0

(−1)n

in
(z − i)n :=

∞∑
n=0

in−1(z − i)n, |z − i| < 1,

• 1
z

=
1
−i

∞∑
n=0

(−1)n

(−i)n
(z + i)n = −

∞∑
n=0

(z + i)n

in+1
, |z + i| < 1.

(v) A similar technique may be adopted to find the Taylor expansion about
z = a �= 0, for f(z) = 1/z2. To do this, we first recall that for |z| < 1

1
1 − z

=
∞∑

n=0

zn

and, because of Theorem 6.51, differentiating with respect to z gives

1
(1 − z)2

=
∞∑

n=1

nzn−1 =
∞∑

n=0

(n + 1)zn, |z| < 1.

Using this, we may write

1
z2

=
1

(a + z − a)2
=

1
a2

1
[1 + (z − a)/a]2

=
1
a2

∞∑
n=0

(n + 1)(−1)n

(
z − a

a

)n

, |z − a| < |a|.

In particular, the Taylor expansion of 1/z2 about a = 1 follows:

1
z2

=
∞∑

n=0

(−1)n(n + 1)(z − 1)n, |z − 1| < 1.

Moreover, it is clear that for |z − 1| < 1,

z − 1
z2

=
∞∑

n=1

(−1)n−1n(z − 1)n

which is the Taylor series for (z−1)/z2 about z = 1. We can often build
on results such as this. •

We now examine some relationships between uniform convergence and
integration.



254 8 Applications of Cauchy’s Theorem

Theorem 8.11. Let {fn(z)} be a sequence of functions continuous on a con-
tour C, and suppose that {fn(z)} converges uniformly to f(z) on C. Then

lim
n→∞

∫
C

fn(z) dz =
∫

C

lim
n→∞ fn(z) dz =

∫
C

f(z) dz.

Proof. The statement of the theorem requires us to show that the sequence∫
C

fn(z) dz converges to
∫

C
f(z) dz.

Note that, by Theorem 6.26, f(z) is continuous on C so that
∫

C
f(z) dz

exists. Given ε > 0, there is an integer N = N(ε) such that

|fn(z) − f(z)| < ε for n > N and all z on C.

Denoting the length of C by L, it follows, for n > N , that∣∣∣∣
∫

C

fn(z) dz −
∫

C

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

C

(fn(z) − f(z)) dz

∣∣∣∣
≤

∫
C

|fn(z) − f(z)| |dz| < εL.

Since ε is arbitrary, the proof is complete.

Corollary 8.12. Suppose {fn(z)} is a sequence of continuous functions and
that

∑∞
n=0 fn(z) converges uniformly on a contour C. Then

∞∑
n=0

(∫
C

fn(z) dz

)
=

∫
C

( ∞∑
n=0

fn(z)

)
dz.

Proof. Set Sn(z) =
∑n

k=0 fk(z). Then,

∞∑
n=0

(∫
C

fn(z) dz

)
= lim

n→∞

n∑
k=0

∫
C

fk(z) dz = lim
n→∞

∫
C

Sn(z) dz.

But by Theorem 8.11,

lim
n→∞

∫
C

Sn(z) dz =
∫

C

lim
n→∞Sn(z) =

∫
C

( ∞∑
n=0

fn(z)

)
dz.

Remark 8.13. Our proof of Theorem 8.8 mimicked the proof in the real case.
In view of this corollary, we can now give a simpler proof that does not involve
a remainder term. Instead of (8.9), we can write

1
ζ − z

=
∞∑

n=0

(z − z0)n

(ζ − z0)n+1
,

the convergence being uniform on C1. Hence we may multiply by f(ζ)/2πi
and integrate term-by-term. This leads directly to
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f(z) =
1

2πi

∫
C1

f(ζ)
ζ − z

dζ

=
1

2πi

∫
C1

( ∞∑
n=0

(z − z0)n

(ζ − z0)n+1

)
f(ζ) dζ

=
∞∑

n=0

(z − z0)n

(
1

2πi

∫
C1

f(ζ)
(ζ − z0)n+1

dζ

)

=
∞∑

n=0

f (n)(z0)
n!

(z − z0)n. •

We might expect a function f(z) to be analytic at a point z0 if∫
C

f(z) dz = 0

along every simple closed contour in which z0 is an interior point. Unfortu-
nately, this converse of Cauchy’s theorem is not true. For example,∫

C

1
z2

dz = 0

along every simple closed contour C having the origin as an interior point.
This is because f(z) is analytic in the region between C and some circle |z| = ε
contained in C. Thus by Cauchy’s theorem for multiply connected regions,∫

C

1
z2

dz =
∫
|z|=ε

1
z2

dz =
∫ 2π

0

iεeiθ

ε2eiθ
dθ =

i

ε

∫ 2π

0

e−iθ dθ = 0.

But we do have a partial converse to Cauchy’s theorem even when the domain
D is not simply connected.

Theorem 8.14. (Morera’s Theorem) Let f(z) be continuous in a domain
D. If

∫
C

f(z) dz = 0 along every simple closed contour C contained in D,
then f(z) is analytic in D.

Proof. Fixing z0 in D, the value of the function

F (z) =
∫ z

z0

f(ζ) dζ

is independent of the path of integration from z0 to z inside D. Choose h
small enough so that the line segment from z to (z+h) lies in D, and consider
the difference quotient

F (z + h) − F (z)
h

=
1
h

[∫ z+h

z0

f(ζ) dζ −
∫ z

z0

f(ζ) dζ

]
=

1
h

∫ z+h

z

f(ζ) dζ.



256 8 Applications of Cauchy’s Theorem

Then

F (z + h) − F (z)
h

− f(z) =
1
h

∫ z+h

z

(f(ζ) − f(z)) dζ, (8.14)

where the path from z to (z + h) is taken to be the straight line segment.
By the continuity of f(z), we have |f(ζ) − f(z)| < ε for |h| sufficiently small.
Since the line segment from z to (z + h) has length |h|, it follows from (8.14)
that ∣∣∣∣F (z + h) − F (z)

h
− f(z)

∣∣∣∣ <
1
|h|ε|h| = ε.

Therefore, F (z) is analytic in D with F ′(z) = f(z). Moreover, F (z) must have
derivatives of all orders. In particular, F ′′(z) = f ′(z) at all points in D, thus
proving the analyticity of f(z).

Corollary 8.15. Let f(z) be analytic in a simply connected domain D. If z0

is a point in D, then F (z) =
∫ z

z0
f(ζ) dζ is analytic in D.

Proof. According to Cauchy’s theorem for simply connected domains, we have∫
C

f(z) dz = 0 along every closed contour C contained in D. Hence f(z)
satisfies the hypotheses (as well as the conclusion) of Morera’s theorem. The
result is thus implicit in the proof of Morera’s theorem.

Recall that even if f(z) is analytic in a domain D, we are not guaranteed
that

∫
C

f(z) dz = 0 along every simple closed contour C contained in D. The
function f(z) = 1/z is analytic in the annulus bounded by the circles |z| = 1/2
and |z| = 2. But

∫
|z|=1

(1/z) dz = 2πi even though the circle is contained in
the annulus. Note, however, that the interior of |z| = 1 is not contained in the
annulus, so that Cauchy’s theorem is not applicable. For a simply connected
domain, it is true that the integral around every simple closed contour in the
domain is zero.

In view of Morera’s theorem, we can say that a necessary and sufficient
condition for a continuous function to be analytic in a simply connected do-
main is that the integral be independent of the path of integration. At first
glance, it appears that Morera’s theorem is useless for proving a function to
be analytic, in as much as it is not possible to test all simple closed contours.
However, the proof of the next theorem should dispel any doubts as to the
utility of Morera’s theorem.

Theorem 8.16. Let {fn(z)} be a sequence of analytic functions converging
uniformly to a function f(z) on all compact subsets of a domain D. Then
f(z) is analytic in D.

Proof. It suffices to show that f(z) is analytic at an arbitrary point z0 in D.
Construct a neighborhood D′ of z0 contained in D. By Theorem 6.26, f(z)
must be continuous at all points in D′. According to Theorem 8.11,
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lim
n→∞

∫
C

fn(z) dz =
∫

C

f(z) dz (8.15)

along every simple closed contour C contained in D′. Since fn(z) is analytic
in D′, ∫

C

fn(z) dz = 0

for each n and each simple closed contour C. In view of (8.15),∫
C

f(z) dz = 0.

By Morera’s theorem, f(z) must be analytic in D′. In particular, f(z) is
analytic at z0. This completes the proof.

Remark 8.17. Requiring uniform convergence only on compact subsets,
rather than on the whole domain, will give us the needed flexibility to deal
with certain questions in later chapters. •

Rewriting Theorem 8.16 in terms of series, we have the following: If {fn(z)}
is a sequence of analytic functions, and

∑∞
k=0 fk(z) converges uniformly to

f(z) on compact subsets of D, then f(z) is analytic in D.
This follows on noting that, for each simple closed contour C contained

in D,

∞∑
k=0

(∫
C

fk(z) dz

)
=

∫
C

( ∞∑
k=0

fk(z)

)
dz =

∫
C

f(z) dz = 0.

Corollary 8.18. Suppose {fn(z)} is a sequence of functions analytic in a
domain D, and that f(z) =

∑∞
n=0 fn(z), the series being uniformly convergent

on all compact subsets of D. Then for all z in D,

f ′(z) =
∞∑

n=0

f ′
n(z).

Proof. According to Theorem 8.16, f(z) is analytic in D. Hence, by Theorem
8.3,

f ′(z) =
1

2πi

∫
C

f(ζ)
(ζ − z)2

dζ,

where C is any simple closed contour in D′, a neighborhood of z contained in
D. Also note that, for each n,

f ′
n(z) =

1
2πi

∫
C

fn(ζ)
(ζ − z)2

dζ.

Since
∑∞

n=0[fn(ζ)/(ζ − z)2] converges uniformly to f(ζ)/(ζ − z)2 for ζ on C,
we have
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f ′(z) =
1

2πi

∫
C

f(ζ)
(ζ − z)2

dζ

=
1

2πi

∫
C

( ∞∑
n=0

fn(ζ)
(ζ − z)2

)
dζ

=
∞∑

n=0

(
1

2πi

∫
C

fn(ζ)
(ζ − z)2

dζ

)

=
∞∑

n=0

f ′
n(z).

More generally, for each integer k,

f (k)(z) =
k!
2πi

∫
C

f(ζ)
(ζ − z)k+1

dζ and f (k)
n (z) =

k!
2πi

∫
C

fn(ζ)
(ζ − z)k+1

dζ.

Since
∑∞

n=0[fn(ζ)/(ζ − z)k+1] converges uniformly to f(ζ)/(ζ − z)k+1 for ζ
on C, we can conclude, as above, that

f (k)(z) =
∞∑

n=0

f (k)
n (z) for all z in D.

Example 8.19. For example,
∑∞

n=1 3−n sin(nz) represents an analytic func-
tion in the strip |Im z| < ln 3. Indeed, as

|3−n sin(nz)| = 3−n

∣∣∣∣einz − e−inz

2

∣∣∣∣
≤ 3−n

2

(
2en|Im z|

)
= e−n(ln 3−|Im z|),

the Weierstrass M -test shows that
∑∞

n=1 3−n sin(nz) converges uniformly on
each compact subset of D = {z : |Im z| < ln 3}. By Corollary 8.18, the given
series of functions represents an analytic function for |Im z| < ln 3. •
Remark 8.20. Note a difference between real and complex series. The real
series

f(x) =
∞∑

n=1

sinnx

n2

is uniformly convergent on the real line. But a term-by-term differentiation
leads to

f ′(x) =
∞∑

n=1

cos nx

n
,

which does not converge at x = 0. In the complex case, a series of analytic
functions uniformly convergent on compact subsets of a domain may be dif-
ferentiated term-by-term to obtain the derivative of the sum. However, we
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cannot extend this to the boundary of the domain. For example, even though
the function

f(z) =
∞∑

n=1

zn

n2

is uniformly convergent in the disk |z| ≤ 1, term-by-term differentiation at
z = 1 would yield

f ′(1) =
∞∑

n=1

1
n

,

which does not converge. •
Suppose f(z) is an entire function. According to Theorem 8.8, f(z) has a

power series representation

f(z) =
∞∑

n=0

anzn =
∞∑

n=0

f (n)(0)
n!

zn

valid for all z. By Theorem 6.51 or by Corollary 8.18, the derivative of the
sum is the sum of the derivatives. That is,

f ′(z) =
∞∑

n=1

nanzn−1

for all z. Now by Corollary 8.12, we may also integrate term-by-term. In other
words,

F (z) =
∫ z

0

f(ζ) dζ =
∫ z

0

( ∞∑
n=0

anζn

)
dζ

=
∞∑

n=0

an

n + 1
zn+1,

where the integral is taken along any contour joining the origin to z.
These results may be combined to obtain useful power series relationships.

Example 8.21. Let us now expand f(z) = sin2 z in a Maclaurin series. We
could, of course, take derivatives to obtain the Maclaurin expansion directly.
But let us consider other methods.

Method 1. We may use (8.12) and obtain

sin2 z =
(

z − z3

3!
+

z5

5!
+ · · ·

)(
z − z3

3!
+

z5

5!
+ · · ·

)
, z ∈ C.

Collecting terms and arranging in ascending order, we obtain

sin2 z = z2 − 1
3!

z4 +
(

2
5!

+
1

(3!)2

)
z6 + · · · , z ∈ C.
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In this form, it is difficult to find the general term.

Method 2. We have

f ′(z) = 2 sin z cos z = sin 2z =
∞∑

n=1

(−1)n+1

(2n − 1)!
(2z)2n−1, z ∈ C.

But, as f is analytic in C and f(0) = 0,

f(z) − f(0) = sin2 z =
∫ z

0

f ′(ζ) dζ

=
∞∑

n=1

(∫ z

0

(−1)n+1

(2n − 1)!
(2z)2n−1

)

=
∞∑

n=1

(−1)n+122n−1

(2n)!
z2n.

Method 3. We use the trigonometric identity sin2 z = (1− cos 2z)/2, and so
by (8.13), we obtain

sin2 z =
1
2

(
1 −

∞∑
n=0

(−1)n

(2n)!
(2z)2n

)
=

1
2

∞∑
n=1

(−1)n+122n

(2n)!
z2n. •

Example 8.22. To expand f(z) = Log (1 + z) in a Maclaurin series valid for
|z| < 1, we rely upon the geometric series

f ′(z) =
1

1 + z
= 1 − z + z2 − z3 + · · · =

∞∑
n=0

(−1)nzn.

Hence, as f is analytic for |z| < 1, with f(0) = Log 1 = 0,

f(z) − f(0) = Log (1 + z) =
∫ z

0

f ′(ζ) dζ =
∞∑

n=0

∫ z

0

(−1)nζn dζ

=
∞∑

n=0

(−1)nzn+1

n + 1

= z − z2

2
+

z3

3
− z4

4
+ · · · , |z| < 1.

Note that we have chosen the principal branch so that Log 1 = 0. More
generally, when log 1 = 2kπi, we have

f(z) − f(0) = log(1 + z) − 2kπi =
∫ z

0

f ′(ζ) dζ =
∞∑

n=0

(−1)nzn+1

n + 1
,

and so

log(1 + z) = 2kπi +
∞∑

n=1

(−1)n−1

n
zn. •
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Questions 8.23.

1. If f(z0) = (1/2πi)
∫

C
(f(z)/(z− z0)) dz for all points z0 inside C, is f(z)

analytic inside C?
2. Suppose that f is analytic inside and on a simple closed contour C, and

z0 lies outside C. What is the value of
∫

C
(f(z)/(z − z0)) dz?

3. Suppose that f is analytic inside and on a simple closed contour C. Does∫
C

(f ′(z)/(z − z0)) dz =
∫

C
(f(z)/(z − z0)2) dz for all z0 not on C?

4. If the derivatives of all orders for two different functions agree at one
point, how do the two functions compare?

5. If limn→∞
∫

C
fn(z) dz =

∫
C

(limn→∞ fn(z)) dz, does {fn(z)} converge
uniformly on C?

6. If a sequence of functions converges uniformly on all compact subsets of
a domain, must the convergence be uniform throughout the domain?

7. If {fn(z)} is a sequence of functions analytic in a domain D, and {fn(z)}
converges to f(z) in D, is f(z) analytic in D?

8. Suppose {fn(z)} converges uniformly to an analytic function. What can
we say about the functions {fn(z)}?

9. Does
∫
|z|=1

z−3eiz dz = 0? Does
∫
|z|=1

z−3 sin z dz = 0?
10. If f(z) is continuous inside and on a simple closed contour C, and∫

C
f(z) dz = 0, is f(z) analytic inside C?

11. If f (k)(z) =
∑∞

n=0 f
(k)
n (z), what can we say about f (k−1)(z)?

12. If f(z) =
∑∞

n=0 anzn, can f ′(z0) exist and not equal
∑∞

n=1 nanzn−1
0 ?

13. Does
∫

C
(z− a)−1(z− b)−1 dz = 0 for every simple closed contour C not

passing through a, b?

Exercises 8.24.

1. Prove Cauchy’s integral formula for multiply connected regions.
2. (a) If P (z) is a polynomial of degree n, prove that∫

|z|=2

P (z)
(z − 1)n+2

dz = 0.

(b) If n and m are positive integers, show that∫
C

(n − 1)!ez

(z − z0)n
dz =

∫
C

(m − 1)!ez

(z − z0)m
dz

along any contour containing z0.
3. Evaluate the following integrals, where C is the circle |z| = 3.

(a)
∫

C

ez

z − 2
dz (b)

∫
C

ez2

z − 2
dz (c)

∫
C

ez2

(z − 2)2
dz

(d)
∫

C

ez sin z

(z − 2)2
dz (e)

∫
C

e−z cos z

(z − 2)3
dz (f)

∫
C

3z4 + 2z − 6
(z − 2)3

dz.



262 8 Applications of Cauchy’s Theorem

4. Use partial fractions to evaluate the following integrals.

(a)
∫
|z|=2

1
z2 − 1

dz (b)
∫
|z|=2

1
z2 + 1

dz

(c)
∫
|z|=2

1
z4 − 1

dz (d)
∫
|z|=3

z3 + 3z − 1
(z − 1)(z + 2)

dz.

5. If C = {z : |z| = r} (r �= 1), then show that∫
C

dz

1 + z2
=

{
−2 arctan r if 0 < r < 1

π − 2 arctan r if 1 < r.

6. Use the Cauchy integral formula to evaluate the following integrals.

(a)
∫
|z|=1

(Re z)2 dz (b)
∫
|z−1|=1

(z)2 dz (c)
∫
|z−1|=1

(Im z)2 dz.

7. Evaluate the integral
∫

C
z/((16 − z2)(z + i)) dz, where C is the circle

(a) |z| = 2 (b) |z − 4| = 2 (c) |z + 4| = 2

(d) |z| = 1
2 (e) |z| = 5.

8. Let γ : [0, 4π] → C be given by

γ : γ(t) =
{

3teit if 0 ≤ t ≤ 2π
10π − 2t if 2π ≤ t ≤ 4π.

Evaluate the integral
∫

γ
(z2 + π2)−1 dz.

9. Find the first five coefficients in the Maclaurin expansion for

(a) ez sin z (b)
1

cos z
(c) ez+z2

(d) ez/(1−z).

10. Suppose f(z) and g(z) are analytic at z0 with

f(z0) = f ′(z0) = · · · = f (n−1)(z0) = 0,
g(z0) = g′(z0) = · · · = g(n−1)(z0) = 0.

If g(n)(z0) �= 0, show that

lim
z→z0

f(z)
g(z)

=
f (n)(z0)
g(n)(z0)

.

This is a generalization of Theorem 5.26.
11. Evaluate the following limits, using either the previous exercise or The-

orem 8.8.

(a) lim
z→0

ez − 1 − z

z2
(b) lim

z→0

sin z

z − z3

(c) lim
z→0

sin z

ez − 1
(d) lim

z→0

sin z − z

cos z − 1
.
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12. If f(z) is analytic at z = z0, and |f (n)(z0)| ≤ nk for each n (k fixed),
show that f(z) is actually an entire function.

13. Show that the following series represent analytic functions in the given
domain, and find their derivatives.

(a)
∞∑

n=1

1
nz

(Re z > 1) (b)
∞∑

n=1

1
z2 − n2

(z �= ±1,±2, . . . ).

14. Suppose f(z) and g(z) are analytic in a simply connected domain D.
Prove that∫ z1

z0

f(z)g′(z) dz = f(z1)g(z1) − f(z0)g(z0) −
∫ z1

z0

g(z)f ′(z) dz,

where the path of integration is any contour from z0 to z1 that lies in
D.

15. Suppose f(z) is continuous, but not necessarily analytic, on a contour
C. Show that the function

F (z) =
∫

C

f(ζ)
ζ − z

dζ

is analytic at each z not on C, with

F ′(z) =
∫

C

f(ζ)
(ζ − z)2

dζ.

16. Choose a specific determination, find Maclaurin expansions for the fol-
lowing functions, and state the region for which the expansion is valid.

(a) (1 + z)α (0 < α < 1) (b) tan−1(z) (c) sin−1 z.

8.2 Cauchy’s Inequality and Applications

In elementary calculus, we often deduce information about a function based
on the behavior of its derivative. For example, if the derivative is positive,
negative, or zero on an interval the function is, respectively, increasing, de-
creasing or constant on that interval. In complex analysis, the opposite is also
true in the following sense. The behavior of an analytic function is used to es-
timate the behavior of its derivatives. More precisely, we see that if an analytic
function f is bounded in a neighborhood of a point z0, then the derivatives
of f cannot be arbitrarily large at z0.

Theorem 8.25. (Cauchy’s Inequality) Suppose f(z) is analytic inside and
on the circle C having center at z0 and radius r. If |f(z)| ≤ M on C, then

|f (n)(z0)| ≤ Mn!/rn, n = 1, 2, . . . .
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Proof. By the generalized Cauchy integral formula,

f (n)(z0) =
n!
2πi

∫
C

f(z)
(z − z0)n+1

dz.

Hence, by the hypothesis,

|f (n)(z0)| ≤
n!
2π

∫
C

|f(z)|
|z − z0|n+1

|dz|

≤ n!M
2πrn+1

∫
C

|dz|

=
n!M

2πrn+1
(2πr) =

n!M
rn

.

As a comparison with real analysis, we consider f(x) = sin(1/x) for x > 0.
Then f is differentiable for x > 0 and |f(x)| ≤ 1 for all x > 0. However,

f ′(x) = − 1
x2

cos(1/x)

which is clearly not bounded because, for example, for each n ∈ N∣∣∣∣f ′
(

1
nπ

)∣∣∣∣ = n2π2.

Here is a surprising application of Cauchy’s inequality.

Corollary 8.26. Suppose that f is analytic for |z−z0| < r. If |f(z)−b| ≤ M ,
then |f ′(z0)| ≤ M/r.

Proof. Take 0 < δ < r. Then g(z) = f(z) − b is analytic and maps the disk
|z − z0| ≤ δ into |w| ≤ M , so by Cauchy’s inequality

|f ′(z0)| = |g′(z0)| ≤ M/δ.

Letting δ → r proves the result.

In particular, if f : Δ → Δ is analytic, then |f ′(0)| ≤ 1 which is a basic
version of the “Schwarz lemma” which will be discussed in the next section.

Recall the functions that are analytic in C are called entire functions. We
know that f : C → C is entire if and only if f(z) has the series expansion
f(z) =

∑∞
n=0 anzn with infinite radius of convergence. An entire function

that is not a polynomial is said to be a transcendental entire function. The
functions ez, sin z, cos z, etc. are transcendental functions.

Cauchy’s inequality enables us to obtain results in complex analysis which
have no real variable counterpart. For example, we have

Theorem 8.27. (Liouville’s Theorem) A bounded entire function must be a
constant.
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Proof. Suppose f(z) is entire with |f(z)| ≤ M for all z. Given any complex
number z0, we have by Cauchy’s inequality, |f ′(z0)| ≤ M/r for every positive
number r. Letting r → ∞, we deduce that f ′(z0) = 0. Since z0 was arbitrary,
f ′(z) = 0 for all z, and hence f is constant by Theorem 5.9.

Remark 8.28. There is, of course, no real variable analog to Liouville’s theo-
rem. The function f(x) = sin x is a nonconstant, everywhere real differentiable
function on R and |f(x)| ≤ 1 on R. On the other hand, we have already seen
that each of | sin z| and | cos z| approaches to ∞ as y → ±∞ for any fixed
x. Likewise, | sinh z| and | cosh z| are unbounded entire functions. Again, by
Liouville’s theorem, each of these hyperbolic functions must be unbounded,
because each is a nonconstant entire function. •
Corollary 8.29. Every f : C → Δ which is analytic is constant. In particu-
lar, there exists no bijective mapping of the unit disk Δ onto C.

Example 8.30. The method used in the proof of Liouville’s theorem helps
us to characterize all those entire functions f such that

|f(z)| ≤ |z|4/ln |z| for |z| > 1.

To do this, we choose R with R > 1. Then for |z| = R > 1,

|f(z)| ≤ |z|4
ln |z| =

R4

lnR

and so, by the Cauchy integral formula and the M-L Inequality

|an| =

∣∣∣∣∣ 1
2π

∫
|z|=R

f(z)
zn+1

dz

∣∣∣∣∣ ≤ 1
Rn−4 lnR

→ 0

as R → ∞ and n − 4 ≥ 0. Thus, an = 0 for n ≥ 4 and hence, f(z) is a
polynomial of degree at most 3. •

Liouville’s theorem says that for a nonconstant entire function f(z), there
is a sequence of points {zn} such that f(zn) → ∞. This result can be sharp-
ened.

Theorem 8.31. (Generalized version of Liouville’s Theorem) A noncon-
stant entire function comes arbitrarily close to every complex number.

Proof. Suppose that f(z) is entire and that there exists a complex number a
such that |f(z) − a| ≥ ε for all z. Then the function

g(z) = 1/[f(z) − a]

is entire and
|g(z)| =

1
|f(z) − a| ≤ 1/ε.

By Liouville’s theorem, g(z) is a constant. Hence, f(z) = 1/g(z)+a must also
be a constant.
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Corollary 8.32. Suppose f(z) is a nonconstant entire function. Given any
complex number a, there exists a sequence {zn} such that f(zn) → a.

Proof. According to Theorem 8.31, for each n we can find a point zn such
that f(zn) ∈ N(a; 1/n). Since 1/n → 0, it follows that f(zn) → a.

Remark 8.33. Though a nonconstant entire function come arbitrarily close
to every complex value, it does not necessarily assume every complex value.
For example, f(z) = ez is never equal to zero. However, f(−n) = e−n → 0 as
n → ∞. The fact that ez assumes every other complex value can be viewed
as a special case of Picard’s Theorem. •
Theorem 8.34. (Picard’s Theorem) A nonconstant entire function assumes
each complex value, with one possible exception.

For a proof of Picard’s theorem, see DePree and Oehring [DO] and Pon-
nusamy [P1].

Our next theorem gives an estimate on the “rate of growth” of entire
functions.

Theorem 8.35. Suppose that f(z) is an entire function and that |f(z)| ≤
Mrλ (|z| = r ≥ r0) for some nonnegative real number λ. Then f(z) is a
polynomial of degree at most λ.

Proof. Let

f(z) =
∞∑

n=0

anzn =
∞∑

n=0

f (n)(0)
n!

zn.

By Cauchy’s inequality, on the circle |z| = r we have

|an| =
|f (n)(0)|

n!
≤ Mrλ

rn
=

M

rn−λ
.

Letting r → ∞, we see that an = 0 whenever n > λ. Hence, f(z) is a
polynomial of degree no more than λ.

Example 8.36. If f is entire such that |f(z)| ≤ a+b|z| for some a ≥ 0, b > 0,
then f is either constant or a first degree polynomial. Let us use the Cauchy
inequality to provide a proof. We let z0 be an arbitrary point of C. Then for
|z − z0| ≤ R, one has

|f(z)| ≤ a + b|z| = a + b|z − z0 + z0|
≤ a + b(R + |z0|).

By Cauchy’s inequality, with M = a + b(R + |z0|)

|a2| =
∣∣∣∣f ′′(z0)

2!

∣∣∣∣ ≤ a + b(R + |z0|)
R2

→ 0 as R → ∞
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so that f ′′(z0) = 0. Since z0 is arbitrary, f ′′(z) = 0 on C, and therefore f ′(z)
is a constant, say c. Thus,

f(z) − f(0) =
∫ z

0

f ′(ζ) dζ = cz

and hence, f(z) = f(0) + cz. •
Remark 8.37. When λ = 0, Theorem 8.35 reduces to Liouville’s theorem.
Choosing 0 < λ < 1 shows that we need not assume that f(z) is bounded
(only that it grows at a sufficiently slow rate) in order to deduce that f(z)
must be constant. •

Set M(r, f) = max|z|=r |f(z)|. Theorem 8.35 says that, for a transcenden-
tal entire function f(z), the function M(r, f) grows faster than any power of
r. This does not mean that f(z) → ∞ along every path to ∞. For instance, we
have M(r, ez) = er, but ez → 0 as z → ∞ along the negative real axis. Poly-
nomials are somewhat different. The growth of a polynomial is determined by
its degree – a fact that has been used in almost every proof of the fundamental
theorem of algebra.

Theorem 8.38. (Growth Lemma) Suppose P (z) = a0 + a1z + · · · + anzn,
an �= 0. Then there exists a sufficiently large r such that

|an|
2

|z|n ≤ |P (z)| ≤ 3|an|
2

|z|n, for all z ∈ C with |z| ≥ r.

Proof. For z �= 0, we have

P (z) = zn
(
an +

an−1

z
+

an−2

z2
+ · · · +

a0

zn

)
.

By the triangle inequality,

|z|n
(
|an| −

∣∣∣an−1

z
+ · · · +

a0

zn

∣∣∣) ≤ |P (z)|

≤ |z|n
(
|an| +

∣∣∣an−1

z
+ · · · +

a0

zn

∣∣∣) .

For |z| > 1 and n > k, we have |z|n > |z|k and so∣∣∣an−1

z
+

an−2

z2
+ · · · +

a0

zn

∣∣∣ ≤ |an−1| + |an−2| + · · · + |a0|
|z| :=

K

|z| .

Hence

|z|n
(
|an| −

K

|z|

)
≤ |P (z)| ≤ |z|n

(
|an| +

K

|z|

)
(|z| ≥ 1).

The result now follows when K/|z| < |an|/2, i.e., when

|z| ≥ max{1, 2K/|an|}.
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Theorems 8.35 and 8.38 provide a comparison between the growth of poly-
nomial and transcendental functions. If P (z) is a polynomial and f(z) is a
transcendental function, then M(r, P )/M(r, f) → 0 as r → ∞. That is, along
its “best path”, a transcendental function approaches infinity more rapidly
than does a polynomial. However, P (z) → ∞ as z → ∞ along any path. We
shall show in Chapter 9 that no transcendental function has this property.
Loosely speaking, a transcendental function grow more rapidly than a poly-
nomial, whereas a polynomial grows more consistently than a transcendental
function.

An important property of polynomials is stated in Theorem 8.39.

Theorem 8.39. (The Fundamental Theorem of Algebra) Every noncon-
stant polynomial has at least one zero.

Proof. Suppose P (z) = a0 + a1z + · · · anzn, an �= 0. If P (z) never van-
ishes, then 1/P (z) is entire. By Theorem 8.38, 1/P (z) → 0 as z → ∞. Thus
|1/P (z)| < 1 for |z| ≥ R. But 1/P (z) is continuous (hence bounded) on the
compact set |z| ≤ R. Therefore, 1/P (z) is bounded in the whole plane and,
by Liouville’s theorem, must be a constant. This implies that P (z) is also a
constant, contradicting our assumption.

Corollary 8.40. Every polynomial of degree n has exactly n (not necessarily
distinct) zeros.

Proof. The fundamental theorem shows the existence of at least one zero r1.
The expression z − r1 may be factored out, leaving a polynomial of degree
n − 1. Reapplying the theorem to this new polynomial, we obtain another
zero. This process can be repeated n times.

Corollary 8.41. Every polynomial of degree n assumes each complex number
exactly n times.

Proof. If P (z) is a polynomial of degree n, then

Q(z) = P (z) − a

is also a polynomial of degree n. By Corollary 8.40, Q(z) has n zeros. But the
zeros of Q(z) are the “a” points of P (z).

Remark 8.42. Corollary 8.41 provides a more complete solution, in the case
of polynomials, than does Theorem 8.31. A polynomial of degree n not only
comes arbitrarily close to every complex value, it actually takes on every
value n times. But the existence of n roots tells nothing about their location.
In Section 9.4, we shall develop a method for approximating the location of
zeros for some analytic functions. •
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Example 8.43. We wish to show that if all the zeros of a polynomial P (z)
have positive real parts, then so do the zeros of its derivative P ′(z).

To do this, let P (z) be a polynomial of degree n and have zeros at zk

(not necessarily distinct) with Re zk > 0 for each k = 1, 2, . . . , n. By the
fundamental theorem of algebra we can express P (z) as

P (z) = c(z − z1)(z − z2) · · · (z − zn)

where c is a nonzero constant. For z �= zk, we have

P ′(z)
P (z)

=
1

z − z1
+

1
z − z2

+ · · · +
1

z − zn
.

We claim that P ′(z) �= 0 whenever Re z ≤ 0. If Re z ≤ 0, as Re zk > 0, we
have Re (z − zk) < 0. Thus, for each k = 1, 2, . . . , n, we see that

Re
(

1
z − zk

)
< 0

and therefore,

Re
(

P ′(z)
P (z)

)
< 0

which gives that P ′(z) �= 0 whenever Re z ≤ 0. Hence, the zeros of P ′(z) must
have its real parts positive. •

We now see how the behavior of an analytic function at a sequence of
points influences its behavior elsewhere (see also Theorem 6.56).

Theorem 8.44. Suppose f(z) is analytic in the disk |z − z0| < R, and that
{zn}n≥1 is a sequence of distinct points converging to z0. If f(zn) = 0 for
each n ∈ N, then f(z) ≡ 0 everywhere in |z − z0| < R.

Proof. We have

f(z) = a0 +
∞∑

k=1

ak(z − z0)k (|z − z0| < R). (8.16)

Since f(z) is continuous at z0, it follows that f(zn) → f(z0) as zn → z0.
Therefore,

lim
n→∞ f(zn) = 0 = f(z0) = a0.

Hence f(z) has no constant term, and we may write

f(z) = (z − z0)

(
a1 +

∞∑
k=2

ak(z − z0)k−1

)
.

Setting z = zn and dividing by zn − z0 leads to
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lim
n→∞

f(zn)
zn − z0

= 0 = a1.

In like manner,

f(z) = (z − z0)2
(

a2 +
∞∑

k=3

ak(z − z0)k−2

)

so that

lim
n→∞

f(zn)
(zn − z0)2

= 0 = a2.

An induction shows that ak = 0 for each k, and the result follows.

Corollary 8.45. (Zeros are isolated) Suppose f(z) is analytic at a point
z = z0. Then either f(z) ≡ 0 in some neighborhood of z0, or there exists a
real number r such that f(z) �= 0 in the punctured disk 0 < |z − z0| ≤ r.

Proof. Assume that no such r exists. Then in each punctured disk
0 < |z−z0| ≤ 1/n, there exists a point zn such that f(zn) = 0. Since zn → z0,
an application of Theorem 8.44 shows that f(z) must be identically zero in
some neighborhood of z0.

Remark 8.46. There is no real variable analog to this corollary. The function

f(x) =

⎧⎨
⎩

x2 sin
π

x
if x �= 0

0 if x = 0

is differentiable for all real x, with f(1/n) = 0 for each n. However, f(x) �= 0
in any neighborhood of the origin. •

We now generalize the previous theorem to arbitrary domains.

Theorem 8.47. (Uniqueness Theorem) Suppose f(z) is analytic in a do-
main D, and that {zn} is a sequence of distinct points converging to a point
z0 in D. If f(zn) = 0 for each n, then f(z) ≡ 0 throughout D.

Proof. Consider the following two disjoint sets:

A = {a ∈ D : f(z) ≡ 0 in some neighborhood of a}
B = {a ∈ D : f(z) �= 0 for all z in some deleted neighborhood of a}.

By Corollary 8.45, every point in D is either in A or in B. It may easily be
verified that both A and B are open sets. Since the domain D = A ∪ B is
connected, either A or B must be the empty set. By Theorem 8.44, the point
z0 is in A. Therefore, B = ∅. This means that A = D, and f(z) ≡ 0 in D.

As a consequence of Theorem 8.47, we have the following result which is
also referred to as the uniqueness/identity principle.
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Theorem 8.48. (Identity Theorem) Suppose {zn} is a sequence of points
having a limit point in a domain D. If f(z) and g(z) are analytic in D, with
f(zn) = g(zn) for each n, then f(z) ≡ g(z) throughout D.

Proof. Let z0 denote the limit point of {zn}. By Theorem 2.18, there exists a
subsequence {znk

} converging to z0. Setting h(z) = f(z) − g(z), we see that
h(znk

) = 0 for all points of the sequence {znk
}. An application of Theorem

8.47 shows that h(z) ≡ 0 in D and the result follows.

Remark 8.49. The requirement that the limit point z0 be in the domain of
analyticity is essential. The nonconstant function f(z) = e1/(1−z) is analytic
in |z| < 1 but not at the point z = 1. For zn = 1 − 1/2nπi, we have

e1/(1−zn) = e2nπi = 1.

Note that zn → 1 as n → ∞, a point at which f(z) is not analytic. •
Example 8.50. Suppose that f is entire. We wish to show that f(R) ⊆ R if
and only if f (n)(0) is real for each n ∈ N. It is evident that if each f (n)(0) ∈ R,
then f(z) =

∑∞
n=0

f(n)(0)
n! zn shows that f(R) ⊆ R. To prove the converse, let

f(R) ⊆ R. Then

g(z) = f(z) =
∞∑

n=0

f (n)(0)
n!

zn

is entire and g(z) = f(z) for z ∈ R. By the identity theorem, g(z) = f(z)
throughout C. Moreover, the power series representation of an analytic func-
tion is unique, and we must have f (n)(0) = f (n)(0) for all n. •
Example 8.51. Does there exist a function f(z) analytic in |z| < 1 and
satisfying

f

(
1
2n

)
= f

(
1

2n + 1

)
=

1
2n

(n = 1, 2, . . . )? (8.17)

The function f(z) = z is an analytic function and satisfies the condition
f(1/2n) = 1/2n. By the identity theorem, that is the only such analytic
function. Since

f

(
1

2n + 1

)
�= 1

2n
,

there does not exist an analytic function that satisfies (8.17). Note, however,
that we can construct a function in |z| < 1 that satisfies

f

(
1

2n + 1

)
=

1
2n

for every n. Setting z = 1/(2n + 1), we have 1/2n = z/(1 − z), so that
f(z) = z/(1 − z) satisfies the condition. •
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Remark 8.52. Cauchy’s integral formula says that the behavior of an ana-
lytic function on a simple closed contour determines its behavior inside. The
identity theorem tells us even more. It says that the behavior at any sequence
of points, inside or on the simple closed contour, determines the behavior of
the analytic function at all points of the domain. •
Remark 8.53. We now have a simple way to prove the standard trigonomet-
ric identities. For example, the function

f(z) = sin2 z + cos2 z

is an entire function that is equal to one on the real axis. Hence f(z) ≡ 1 in
the complex plane; that is, sin2 z + cos2 z ≡ 1 for all z. •
Example 8.54. Let S = {1/n : n = 1, 2, . . . }. Then S ⊂ [0, 1] and S has a
limit point 0. Let f be an entire function and f(z) = p(z) for z = x, x ∈ S,
where p is polynomial p(x) = a0 +a1x+a2x

2 + · · · +akxk. By the Uniqueness
Theorem, since 0 ∈ [0, 1] ⊆ C, we have f(z) = a0 + a1z + · · · + akzk for all
z ∈ C. •
Questions 8.55.

1. Is there a corresponding “Cauchy inequality” when the circle is replaced
by a simple closed contour?

2. Does there exist an analytic function in a neighborhood of the origin
such that |f (n)(0)| ≥ (n!)2 for all n ∈ N?

3. Does there exist a condition which ensures an entire function to be a
polynomial?

4. Is cos z an entire nonconstant function? Must cos z be unbounded? Must
sin z be unbounded?

5. Can a nonconstant entire function be bounded in a half-plane?
6. Can a real part of a nonconstant entire function be bounded?
7. Why is Theorem 8.31 a generalization of Liouville’s theorem?
8. If a nonconstant function is analytic everywhere outside a disk, can the

function be bounded?
9. If f(z) = 1/z, then it is bounded as z → ∞ but is not constant. Does

this contradict Liouville’s theorem?
10. What can we say about entire functions that omit the value zero?
11. What is wrong in the following proof?

Since ez �= 0, 1/ez is bounded. Therefore, by Liouville’s theorem 1/ez is
constant.

12. Suppose that f is entire such that |f(z)| → ∞ as |z| → ∞. Does f have
at least one zero in C? How do we compare with ez?

Note: Note that ez is entire and has no zeros in C. We observe that
lim|z|→∞ |ez| = lim|z|→∞ ex does not exist.
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13. If two entire functions agree at infinitely many points, must they be
equal?

14. If two entire functions agree on a segment of the real axis, must they
agree on C?

15. If f is entire such that either Re f or Im f is bounded, must f be con-
stant?

16. If f is entire such that either Re f > −2006 or Im f > −2006, must f
be constant?

17. If f = u + iv is entire such that au + bv ≥ c for some real numbers a, b
and c, must f be constant?

18. Let f be entire such that f(1/n) = cos(1/n) for all n ∈ Z. Is f(z) = cos z
for all z ∈ C?

19. Let f be analytic in the punctured complex plane C\{0} such that
f(1/nπ) = sin(nπ) for all n ∈ Z. Is f(z) = sin(1/z) for all z ∈ C\{0}?

Exercises 8.56.

1. If f(z) =
∑∞

n=0 anzn is analytic in |z| < R, and f(x) is real when
−R < x < R, show that an is real for each n. Also show that f(z) =
f(z).

2. Let P (z) = a0 +a1z + · · · +anzn, an �= 0. Given ε > 0, show that there
exists an R such that r > R implies

(1 − ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn (|z| = r).

3. If all the zeros of a polynomial P (z) have negative real parts, show that
all the zeros of P ′(z) have negative real parts.

4. Suppose f(z) is an entire function with |f(z)| ≤ |ez| for all z. Prove that
f(z) = Kez, |K| ≤ 1.

5. Find all entire functions f for which there exists a positive constant M
such that |f(z)| ≤ M | cos z| for all z ∈ C. How about if cos z is replaced
by cosh z or sin z or sinh z respectively?

6. Suppose that f(z) is an entire function such that |f ′(z)| ≤ |z| for all
z ∈ C. Show that f must be of the form f(z) = az2 + b where a, b are
complex constants such that |a| ≤ 1/2. What will be the form of f if
f(z) is entire such that |f (k)(z)| ≤ |z| for some fixed k > 2 and for all
z ∈ C?

7. Suppose that f(z) is entire with a and b positive constants. If

f(z + a) = f(z + bi) = f(z)

for all z, show that f(z) is constant.
8. Suppose that f is an entire function such that |f(z)| ≤ 10 on |z−2| = 3.

Find a bound for |f (3)(2)|.
9. Let f(z) =

∑∞
n=0 anzn be analytic for |z| ≤ 1, and assume that |f(z)| ≤

1 for |z| ≤ 1. Use Cauchy’s inequality to prove
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(a)

∣∣∣∣∣
∞∑

n=k

anzn

∣∣∣∣∣ ≤ |z|k
1 − |z| (|z| < 1).

(b) If |z1| ≤ r, |z2| ≤ r, 0 < r < 1, and z1 �= z2, then∣∣∣∣f(z2) − f(z1)
z2 − z1

∣∣∣∣ ≤ 1
(1 − r)2

.

10. If f(z) and g(z) are analytic in a domain D with f(z)g(z) = 0 in D,
prove that either f(z) ≡ 0 or g(z) ≡ 0 in D.

11. Suppose f(z) and g(z) are analytic in domain D and that

f ′(zn)
f(zn)

=
g′(zn)
g(zn)

at a sequence of points {zn} converging to a point z0 in D. Show that
f(z) = Kg(z) in D.

12. Give an example of a nonvanishing analytic function f in the unit disc
|z| < 1 having infinitely many zeros.

13. Prove that there is no analytic function f in the unit disk Δ =
{z : |z| < 1} such that f(1/n) = (−1)n/n2 for n = 2, 3, 4, . . . .

14. Let f and g be analytic in the unit disk Δ.
(a) If f(1/n) = g(1/n) for n = 2, 3, . . . , show that f = g.
(b) Show that f(1/n) = 1/

√
n for each n = 2, 3, . . . is not possible.

15. Suppose that f is entire and that there exists a bounded sequence of
distinct real numbers {an}n≥1 such that f(an) is real for each n ≥ 1.
Show that f(z) is real on R. In addition, if {an} is decreasing such that
an → 0 as n → ∞, and f(a2n) = f(a2n+1) for all n ≥ 1, then show that
f is a constant.

16. In each case, exhibit a nonconstant f having the desired properties or
explain why no such function exists:
(a) f is entire with f (n)(0) = 3n for n even and f (n)(0) = (n− 1)! for n

odd.
(b) f is analytic in |z| < 1 with f(1/n) = n/(2 + n) for n ∈ N.
(c) f is analytic in |z| < 1 such that f(1/n) = (1 + (−1)n)/3 for n ∈ N.
(d) f is analytic in |z| < 1 such that f(1/n) = 2n for n ∈ N.
(e) f is analytic in |z| < 1 such that f(1/n) = 1/

√
n for each n =

2, 3, . . . .
17. The functions

√
z and sin

√
z/

√
z are well defined and analytic on the

cut plane C \(−∞, 0]. Show that

f(z) =
sin

√
z√

z
=

∞∑
k=0

(−1)k+1

(2k + 1)!
zk for z ∈ C \(−∞, 0].

Explain why it is possible to define f(z) on the cut (−∞, 0] so that f is
analytic on C. What values f(x) should be assigned when x ∈ (−∞, 0]?
Can this procedure be applied to g(z) = sin

√
z?
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8.3 Maximum Modulus Theorem

Suppose f(x) is a continuous real-valued function defined on the interval [a, b]
and that F ′(x) = f(x) throughout. Then the “average” value of f(x) on the
interval is given by

1
b − a

∫ b

a

f(x) dx =
F (b) − F (a)

b − a
.

Furthermore, according to the mean-value theorem, this expression is equal
to F ′(ξ) for some ξ, a < ξ < b.

Our next theorem shows that for functions analytic inside and on a circle,
the average of the values on the circumference is equal to the value of the
function at the center of the circle.

Theorem 8.57. (Gauss’s Mean-Value Theorem) Suppose f(z) is analytic
in the closed disk |z − z0| ≤ r. Then

f(z0) =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ.

Proof. By Cauchy’s integral formula,

f(z0) =
1

2πi

∫
|z−z0|=r

f(z)
z − z0

dz.

Write this out in terms of a parameterization z = z0 + reiθ with 0 ≤ θ ≤ 2π,
dz = ireiθdθ. Then

f(z0) =
1

2πi

∫ 2π

0

f(z0 + reiθ)
reiθ

ireiθ dθ =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ.

If f(z) is a constant (say f(z) = C), then Gauss’s theorem gives the
obvious fact that

f(z0) =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ = C.

Our next theorem shows that for nonconstant functions there must be
some points on the circle |z| = r for which |f(z)| > |f(z0)|.

Theorem 8.58. (Maximum Modulus Theorem: First Form) If f(z) is an-
alytic in a domain D, then |f(z)| cannot attain a maximum in D unless f(z)
is constant.

Proof. Suppose |f(z)| attains maximum at a point z0 in D. Choose a disk
|z − z0| ≤ r contained in D. Gauss’s mean-value theorem gives
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f(z0) =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ (8.18)

so that

|f(z0)| ≤
1
2π

∫ 2π

0

|f(z0 + reiθ)| dθ.

By assumption,

|f(z0 + reiθ)| ≤ |f(z0)|, (8.19)

and so

1
2π

∫ 2π

0

|f(z0 + reiθ)| dθ ≤ 1
2π

∫ 2π

0

|f(z0)| dθ = |f(z0)|. (8.20)

Combining (8.18) and (8.20), we have

|f(z0)| =
1
2π

∫ 2π

0

|f(z0 + reiθ)| dθ

or
1
2π

∫ 2π

0

(|f(z0)| − |f(z0 + reiθ)|) dθ = 0.

By (8.19) the integrand is nonnegative and therefore

|f(z0 + reiθ)| = |f(z0)| for 0 ≤ θ ≤ 2π.

Hence, |f(z)| = |f(z0)| for each z on |z− z0| = r. Since r is arbitrary, |f(z)| =
|f(z0)| for all points inside and on |z−z0| = r. Recall that an analytic function
with constant modulus in a domain is constant in that domain, hence f(z) is
constant on |z − z0| < r. From the identity theorem, it follows that f(z) is
constant in the whole domain. Therefore, |f(z)| cannot attain a maximum at
a point of D unless f(z) is constant.

Suppose that f is analytic on a domain D and continuous on the boundary
∂D. By Theorem 8.58, |f(z)| cannot attain its maximum in D unless f(z) is
constant. This raises the following questions:

• Does |f(z)| attains its maximum on ∂D?
• Is |f(z)| ≤ M on D when |f(z)| ≤ M on ∂D?

In general, the answer to both questions are negative.

Theorem 8.59. (Maximum Modulus Theorem: Second Form) If f(z) is
analytic in a bounded domain D and continuous on its closure D, then |f(z)|
attains a maximum on the boundary. Furthermore, |f(z)| does not attain a
maximum at an interior point unless f(z) is constant.
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Proof. First, observe that D is a compact set because D is bounded. Thus,
by Theorem 2.41, as |f(z)| is a continuous real function on D, |f(z)| attains
a maximum somewhere in D. According to the first form of the theorem, the
maximum cannot occur at an interior point. Hence the maximum must occur
on the boundary.

Remark 8.60. The domain need not be simply connected. For instance, the
modulus of any function analytic in the open annulus 1/R < |z| < R and
continuous on the closed annulus 1/R ≤ |z| ≤ R must attain its maximum on
the boundary. The modulus of the function f(z) = z attains its maximum on
the outer boundary, whereas the modulus of f(z) = 1/z attains the maximum
on the inner boundary. •

Theorem 8.59 is not true if D is not bounded. For example, if

f(z) = ez and D = {z ∈ C : Re z > 0},

then ∂D is the imaginary axis and |f(iy)| = |eiy| = 1, i.e., f(∂D) = ∂Δ. Yet
|f(z)| = ex → ∞ as z → ∞ along the positive real axis. Thus, the hypothesis
that D is bounded is essential in Theorem 8.59.

Here is another example. Set f(z) = eiz2
= ei(x2−y2)e−2xy so that

|f(z)| = e−2xy.

If D = {z ∈ C : Re z > 0, Im z < 0}, then, for points on the boundary ∂D,
either x = 0 or y = 0 and so |f(z)| = 1 on ∂D. However, for y = −x (x > 0)
we have

|f(z)| = e2x2 → ∞ as x → ∞.

Then both examples show that the modulus of an analytic function need not
attain its maximum on the boundary ∂D and the maximum of the modulus
on the boundary may not be the maximum value inside the domain D unless
D is bounded.

Example 8.61. Suppose that we wish to find the maximum modulus of
f(z) = 3z − 2i on |z| ≤ 3. To do this, we compute

|f(z)|2 = |3z − 2i|2 = 9|z|2 + 12Re (iz) + 4 = 9|z|2 − 12Im z + 4.

By Theorem 8.59, max|z|≤3 |f(z)| occurs on the boundary |z| = 3. Therefore,
on |z| = 3,

|f(z)| =
√

9(3)2 − 12Im z + 4 =
√

85 − 12Im z.

The last expression attains its maximum when Im z attains its minimum on
|z| = 3, namely, at the point z = −3i. Thus,

max
|z|≤3

|f(z)| =
√

85 − 12(−3) =
√

121 = 11.
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Alternatively, as |f(z)| attains its maximum on |z| = 3, we consider z = 3eiθ

and compute
|f(z)| = |3(3eiθ) − 2i| =

√
85 − 36 sin θ.

This expression is maximum when − sin θ is maximum, i.e., when θ = −π/2.
Thus, the maximum value of |f(z)| on |z| ≤ 3 is 11. More generally, we have
the following:

If 0 �= a ∈ C, 0 �= b ∈ C and f(z) = az + b on |z| ≤ R, then

max
|z|≤R

|az + b| = max
|z|≤1

|aRz + b| = |a|R + |b|

and the maximum value is attained at z0 on the boundary |z| = 1, where
arg z0 = Arg b − Arg a. Clearly, this follows from

az + b = |a|eiArg az + |b|eiArg b = eiArg b
[
|a|ze−i(Arg b−Arg a) + |b|

]
.

Moreover, it is easy to see that max|z|≤1 |azn + b| ≤ |a| + |b|. •
Example 8.62. If f(z) = z2/(z3 − 10) for |z| ≤ 2, then f is analytic inside
and on |z| = 2. Then |f(z)| attains its maximum value on |z| = 2. For z = 2eiθ,
0 ≤ θ ≤ 2π, we have

|f(z)| =
|z|2

|(2eiθ)3 − 10|

=
4√

(8 cos 3θ − 10)2 + 82 sin2 3θ

=
4√

64 + 100 − 160 cos 3θ
.

This expression is maximum when − cos 3θ is minimum. Clearly, the mini-
mum value is when cos 3θ = 1, i.e., when θ = 0, 2π/3, 4π/3, 2π. Thus, the
maximum value of |f(z)| is 2. •

As an application of the maximum modulus theorem, we reprove the fun-
damental theorem of algebra (see also Theorem 8.39).

Suppose P (z) = a0 + a1z + · · · + anzn, an �= 0, has no zeros. Then
1/P (z) is a nonconstant entire function with no zeros. In view of Theorem
8.38, 1/P (z) → 0 as z → ∞. When r is large enough,∣∣∣∣ 1

P (z)

∣∣∣∣ <

∣∣∣∣ 1
P (0)

∣∣∣∣ =
∣∣∣∣ 1
a0

∣∣∣∣ (|z| = r).

Thus the continuous function 1/P (z) does not attain a maximum on the
boundary of the compact set |z| ≤ r. Hence |1/P (z)| must attain a maximum
at an interior point, contradicting the maximum modulus theorem. Therefore,
P (z) must have a zero in the disk |z| ≤ r, and the proof is complete.
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It is possible for the modulus of a nonconstant analytic function to attain a
minimum in a domain, and not on its boundary. To see this, consider f(z) = zn

on |z| ≤ r. Then

0 = |f(0)| = min
|z|≤r

|f(z)| < min
|z|=r

|f(z)| = rn,

and so the min{|f(z)| : |z| ≤ r} is attained at the interior point 0. The
max{|f(z)| : |z| ≤ r} = rn is attained at the boundary point r, on |z| = r.
However, we do have the following counterpart to the maximum modulus
theorem.

Theorem 8.63. (Minimum Modulus Theorem) Suppose f(z) is analytic in
a domain D, and that f(z) �= 0 in D. Then |f(z)| cannot attain a minimum
in D unless f(z) is constant. If f(z) is also continuous on D, D compact,
then |f(z)| attains a minimum on the boundary.

Proof. If f(z) �= 0 in D, then 1/f(z) is analytic in D. The function |f(z)|
attains a minimum at a point z0 in D if and only if 1/|f(z)| attains a maximum
at z0. The result follows now upon applying the maximum modulus theorem
to 1/f(z).

Not surprisingly, the fundamental theorem of algebra can also be proved
from the minimum modulus theorem, for, in view of Theorem 8.38, when r is
large enough the polynomial

P (z) = a0 + a1z + · · · + anzn (an �= 0),

satisfies the inequality

|P (z)| > |P (0)| = |a0| (|z| = r).

To preserve the validity of the minimum modulus theorem, the hypothesis
P (z) �= 0 in |z| < r must be false. That is, P (z) must have a zero in the disk
|z| < r.

Example 8.64. Consider f(z) = ez2
/z on D = {1 ≤ |z| ≤ 2}. We wish to

find points where |f(z)| has maximum and minimum values. To do this, we
set z = reiθ. Then, on |z| = r,

|f(z)| =
er2 cos 2θ

r

and the maximum occurs when cos 2θ = 1 and the minimum occurs when
cos 2θ = −1. Thus

max
|z|=r

|f(z)| =
er2

r
and min

|z|=r
|f(z)| =

e−r2

r
.
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Note that the maximum occurs at θ = 0, π while the minimum occurs at
θ = π/2, 3π/2. In particular,

max
z∈D

|f(z)| =
e4

2
and min

z∈D
|f(z)| =

1
2e4

. •
If f(z) is a nonconstant analytic function in |z| ≤ R and |f(z)| ≤ M

on |z| = R, then the maximum modulus theorem says that |f(z)| < M for
|z| < R. We next develop methods to improve this bound inside the disk.

Lemma 8.65. (Schwarz’s Lemma) Suppose f(z) is analytic for |z| < R with
f(0) = 0. If |f(z)| ≤ M in |z| < R, then

|f ′(0)| ≤ M/R and |f(z)| ≤ M |z|/R for |z| < R,

with equality only for f(z) = (M/R)eiαz, α real.

Proof. Since f(0) = 0, we may write f(z) = a1z + a2z
2 + a3z

3 + · · · . Define
a function g : Δ → C by

g(z) =
{

f(z)/z if 0 < |z| < R
f ′(0) if z = 0.

Then g(z) is analytic for |z| < R. Since |f(z)| ≤ M for |z| < R, we have

max
|z|=r

|g(z)| ≤ M

r
(8.21)

for all positive real number r < R. By the maximum modulus theorem applied
to g(z), |g(z)| ≤ M/r for all |z| ≤ r, 0 < r < R. Now, since r can come
arbitrarily close to R, we have

|g(z)| ≤ lim
r→R

M

r
=

M

R
for all |z| < R.

This proves that

|f(z)| ≤ M

R
|z| for all |z| < R

and therefore, |f ′(0)| = |g(0)| ≤ M/R.
In case either |f ′(0)| = M/R or |f(b)| = (M/R)|b| for some b, 0 < |b| < R,

we get |g(0)| = M/R or |g(b)| = M/R and so, |g(z)| attains a maximum in
|z| < R. Therefore, g(z) is a constant function by the maximum modulus
principle and the result follows.

Remark 8.66. Schwarz’s lemma can be phrased in terms of the function
M(r, f). For if f(z) is analytic in |z| < R with f(0) = 0, then M(r, f) ≤
(r/R′)M(R′, f) (r < R′ < R). •
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Corollary 8.67. Suppose f(z) is analytic for |z| < R with f(0) = f ′(0) =
· · · = f (n−1)(0) = 0. If |f(z)| ≤ M in |z| < R, then

|f(z)| ≤ (|z|/R)nM (|z| < R),

with equality only for f(z) = (M/Rn)eiαzn, α real.

Proof. Write f(z) = zng(z), and apply the maximum modulus theorem to
g(z).

If f(0) �= 0, Schwarz’s lemma may be modified to obtain Corollary 8.68.

Corollary 8.68. Suppose f(z) is analytic for |z| < R. If |f(z)| ≤ M in
|z| < R, then |f(z) − f(0)| ≤ (2|z|/R)M (|z| < R).

Proof. Set g(z) = f(z) − f(0). Then g(0) = 0 and

|g(z)| ≤ |f(z)| + |f(0)| ≤ 2M.

Applying Schwarz’s lemma to g(z), we obtain

|g(z)| = |f(z) − f(0)| ≤ 2|z|
R

M (|z| < R).

Remark 8.69. Corollary 8.68 supplies another proof of Liouville’s theorem.
Suppose f(z) is entire with |f(z)| ≤ M for all z. Given a point z0, |z0| = r0,
and an ε > 0, choose R > 2r0M/ε. Then

|f(z0) − f(0)| ≤ 2r0M

R
< ε.

Since ε was arbitrary, f(z0) = f(0). But z0 was also arbitrary, so that f(z) =
f(0) for all z. That is, f(z) is a constant. •
Example 8.70. We wish to characterize those functions f such that f(z) is
analytic for |z| ≤ 1 and |f(z)| = 1 for |z| = 1. To do this, we split the proof
into two parts.

Case (i): Let f have no zeros in |z| < 1. As |f(z)| = 1 for |z| = 1, the
maximum and minimum modulus theorem shows that 1 ≤ |f(z)| ≤ 1 for
|z| ≤ 1; i.e., |f(z)| = 1 for |z| ≤ 1. By Theorem 5.37 (see also Corollary 9.57),
f(z) = eiα, α real.

Case (ii): Let f have zeros in |z| < 1. Clearly, f cannot have infinitely
many zeros in |z| < 1; otherwise a limit point would be in |z| ≤ 1 in which f
is analytic and so f(z) ≡ 0 by the uniqueness theorem. This is a contradiction
because |f(z)| = 1 for |z| = 1. Define

F (z) =
f(z)∏n

k=1

(
z−ak

1−akz

) ,
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where a′
ks are the finite zeros of f in |z| < 1. Then F is analytic in |z| ≤ 1,

F (z) �= 0 in |z| < 1 and |F (z)| = 1 for |z| = 1. By Case (i),

F (z) = eiα or f(z) = eiα
n∏

k=1

z − ak

1 − akz

for some real α. •
Example 8.71. Suppose that f : Δ → Δ is analytic such that f(0) = 0.
Then it can be easily seen that

(i) |f(z) + f(−z)| ≤ 2|z|2 in Δ = {z : |z| < 1},
(ii) the inequality in (i) is strict, except at the origin, unless f has the form

f(z) = εz2 with |ε| = 1.

To see this, we let f(z) =
∑∞

n=1 anzn. Then

F (z) =
f(z) + f(−z)

2z
=

∞∑
n=1

a2nz2n−1

and, by Schwarz’ lemma, |f(z)| ≤ |z|. Therefore, |F (z)| ≤ 1 and (i) follows.
If the equality in (i) holds at some point in |z| < 1, then |F (z)| = 1 for all
|z| < 1 and so F (z) = εz with |ε| = 1. This gives

f(z) + f(−z) = 2
∞∑

n=1

a2nz2n = 2εz2.

Comparing the coefficients of zn on both sides shows that a2 = ε and a2n = 0
for each n > 1. Thus f has the form

f(z) = εz2 +
∞∑

n=1

a2n+1z
2n+1 = εz2 + h(z),

where h(z) is odd. We need to show that h(z) = 0. Note that,

1 ≥ |f(z)|2 = |εz2 + h(z)|2, z ∈ Δ,

and, since h is odd,

1 ≥ |f(−z)|2 = |εz2 + h(−z)|2 = |εz2 − h(z)|2, z ∈ Δ.

Adding the last two inequalities, we see that

2 ≥ |εz2 + h(z)|2 + |εz2 − h(z)|2 = 2(|z|4 + |h(z)|2)

so that |h(z)|2 ≤ 1−|z|4 throughout |z| < 1. Note that h is analytic for |z| < 1
and by the maximum modulus theorem, |h(z)|2 ≤ ε when |z|4 ≤ 1 − ε. Since
ε > 0 is arbitrary, we see that h(z) = 0.
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Alternatively, as |f(z)| < 1 on Δ, for the proof of h(z) = 0, it suffices to
observe that

lim
r→1−

1
2π

∫ 2π

0

|f(reiθ)|2d θ =
∞∑

n=1

|an|2 ≤ 1.

Since a2 = ε, the remaining Taylor’s coefficients of f must be zero, and so
f(z) = εz2. •
Questions 8.72.

1. Suppose f is analytic in the annulus 1 ≤ |z| ≤ R, |f(z)| ≤ Rn for
|z| = R and |f(z)| ≤ 1 on |z| = 1. Is |f(z)| ≤ |z|n in the annulus?

2. Suppose f(z) is analytic inside and on a simple closed contour C. Can
|f(z)| be constant on C without f(z) being constant?

3. Suppose f(z) is analytic in |z| ≤ r. Do there exist two distinct points
z0 = reiθ0 and z1 = reiθ1 such that |f(z)| ≤ |f(z0)| and |f(z)| ≤ |f(z1)|
for all z, |z| < r?

4. Can the modulus of a nonconstant function, analytic in a region that is
not closed, attain a maximum? What if the region is unbounded?

5. Suppose f(z) and g(z) are analytic inside and on a simple closed contour
C, and that |f(z) − g(z)| = 0 on C. Does f(z) = g(z) inside C? What
if |f(z)| − |g(z)| = 0 on C?

6. Define m(r, f) = min|z|=r |f(z)|. What properties does m(r, f) have in
common with M(r, f)?

7. Consider the function f(z) = z2 + 3z + 1 for |z| ≤ 1. Then the triangle
inequality gives that |f(z)| ≤ 5 for |z| ≤ 1. Can we conclude that
max|z|≤1 |f(z)| = 5? What happens if f(z) = z2−3z−1? What happens
if f(z) = z2 + 3iz + i? What happens if f(z) = z2 − 3z + 1?

8. Suppose f is a one-to-one analytic function from the unit disk |z| < 1
onto itself such that f(0) = 0. Does f(z) ≡ eiαz for some real α?

Exercises 8.73.

1. If f(z) is analytic and nonzero in the disk |z − z0| ≤ r, show that

log |f(z0)| =
1
2π

∫ 2π

0

log |f(z0 + reiθ)| dθ.

2. Suppose the nonconstant function f(z) is analytic in a domain D and
continuous on its closure D. If |f(z)| is constant on the boundary of D,
prove that f(z) has a zero in D.

3. Suppose that f is analytic and bounded in the unit disk Δ and f(ζ) → 0
as ζ → 1− along the upper half of the circle C : |ζ − 1/2| = 1/2. Then,
f(x) → 0 as x → 1− along [0, 1).

4. Set M(r, f) = max|z|=r |f(z)| and m(r, f) = min|z|=r |f(z)|. Find
M(r, f) and m(r, f) for the following entire function, and indicate all
points on |z| = r where the maximum and minimum occur.
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(a) f(z) = ez (b) f(z) = zn

(c) f(z) = z2 + 1 (d) f(z) = z2 − z + 1
5. Find the maximum and minimum values of

(a) |z(1 − z)| on |z| ≤ 1
(b) |z/(z2 + 9)| on 1 ≤ |z| ≤ 2
(c) |(3 − iz)2| on |z| ≤ 1
(d) |5 + 2iz2| on |z| ≤ 1

(e)
∣∣∣∣ z − α

1 − αz

∣∣∣∣ on |z| ≤ 1 (where α with |α| < 1 is fixed).

6. Show that max|z|=r |ez2−iz| is attained at the point ir when r ≤ 1/4
and at reiθ, θ = sin−1(1/4r), when r > 1/4.

7. Suppose f is analytic for |z| ≤ 1, f(0) = 0 and |f(z)| ≤ 5 for all |z| = 1.
Can |f ′(0)| > 5?

8. Let P (z) be a polynomial, and set f(z) = P (z)ez. Show that M(r, f) →
∞ and m(r, f) → 0 as r → ∞.

9. Consider the polynomial P (z) = a0 + a1z + · · · + an−1z
n−1 + zn. Show

that, for all sufficiently large values of r, there must exist points z0, z1

on the circle |z| = r such that∣∣∣eP (z0)
∣∣∣ = e(1/2)rn

,
∣∣∣eP (z1)

∣∣∣ = e−(1/2)rn

.

10. Suppose f(z) is analytic with |f(z)| < 1 for |z| < 1. If f(0) = 0, show
that |f ′(0)| ≤ 1, with equality only when f(z) = eiαz (α real).

11. Suppose f(z) is analytic for |z| ≤ 1, and |f(z)| ≥ 1 for |z| ≤ 1. If
f(0) = 1, show that f(z) is a constant.

12. Let f(z) be analytic in |z| < R with f(0) = 0. Prove that

F (z) = f(z) + f(z2) + f(z3) + · · ·

is analytic in |z| < R, and that

|F (z)| ≤ r

1 − r
(|z| = r < R).

13. Does there exist an analytic function f : Δ → Δ such that f(1/2) = 3/4
and f ′(1/2) = 2/3, where Δ = {z : |z| < 1}?

14. Let f be analytic for |z| ≤ 3 such that |f(z)| ≤ 1 for |z| ≤ 3 and
has n roots at wk = e2kπi/3 (k = 0, 1, 2, . . . , n − 1), the nth roots of
unity. What is the maximum value of |f(0)|? Which functions attain a
maximum?
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Laurent Series and the Residue Theorem

In this chapter, we investigate the behavior of a function at points where
the function fails to be analytic. While such functions cannot be expanded
in a Taylor series, we show that a Laurent series expansion is possible. Also,
we introduce the notion of isolated and non-isolated singularities and discuss
different ways of characterizing isolated singularities. The complex integra-
tion machinery that was built in Chapter 7 and developed in Chapter 8 is
now ready to be utilized in order to evaluate definite integrals of real-valued
functions.

9.1 Laurent Series

We know that a function f(z), analytic at a point z0, has a power series
representation f(z) =

∑∞
n=0 an(z − z0)n that is valid in some neighborhood

of z0. In this section, we will characterize expressions of the form

∞∑
n=−∞

an(z − z0)n.

To this end, observe that the series

∞∑
n=1

bn(z − z0)−n

may be viewed as a power series in the variable 1/(z − z0). If R is its radius
of convergence, then the series converges absolutely for

1/|z − z0| < R, that is, for |z − z0| > R1 = 1/R.

Thus the series
∑∞

n=1 bn(z − z0)−n represents an analytic function, f1(z),
outside the circle |z − z0| = R1. Suppose also that the series
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∞∑
n=0

an(z − z0)n

has radius of convergence R2. Then, f2(z) =
∑∞

n=0 an(z − z0)n is analytic
for |z − z0| < R2. If R2 > R1, then f1(z) and f2(z) are both analytic in the
annulus R1 < |z − z0| < R2. Hence the function

f(z) = f1(z) + f2(z) =
∞∑

n=1

bn(z − z0)−n +
∞∑

n=0

an(z − z0)n

is analytic for all z in the annulus R1 < |z − z0| < R2. Setting a−n = bn, we
may rewrite the above expression as

f(z) =
∞∑

n=−∞
an(z − z0)n. (9.1)

An expression of the form (9.1) is called a Laurent series about the point
z0. We remark that if R1 > R2, then the Laurent series

∑∞
n=−∞ an(z − z0)n

diverges everywhere, and if R1 = R2, it diverges everywhere except possibly at
points where |z−z0| = R1. In the last case, there are three different situations.
For example,

•
∞∑

n=−∞ n �=0

zn

n2
converges for |z| = 1

•
∞∑

n=−∞
zn diverges for |z| = 1

•
∞∑

n=−∞, n �=0

zn

n
converges everywhere on |z| = 1 except for z = 1.

We now show that every function analytic in an annulus has a Laurent series
representation.

Theorem 9.1. (Laurent’s Theorem) Suppose f(z) is analytic in the annulus
R1 < |z − z0| < R2. Then the representation

f(z) =
∞∑

n=−∞
an(z − z0)n

is valid throughout the annulus. Furthermore, the coefficients are given by

an =
1

2πi

∫
C

f(ζ)
(ζ − z0)n+1

dζ (n = 0,±1,±2,±3, . . . )

where C is any simple closed contour contained in the annulus that makes a
complete counterclockwise revolution about the point z0.
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Proof. Let z be a point in the annulus. Construct two circles

C1 : |z − z0| = R′
1 and C2 : |z − z0| = R′

2,

where R′
1 and R′

2 are such that R1 < R′
1 < |z − z0| < R′

2 < R2. Then f(z)
is analytic in the closed annulus R′

1 ≤ |z − z0| ≤ R′
2 (see Figure 9.1). By

2

2

0
1

1

1

2

Figure 9.1.

Cauchy’s integral formula for doubly connected domains,

f(z) =
1

2πi

∮
C2

f(ζ)
ζ − z

dζ − 1
2πi

∮
C1

f(ζ)
ζ − z

dζ. (9.2)

Consider the first integral in (9.2). For ζ on C2 and z in the annulus, we have
R′

2 = |ζ − z0| > |z − z0| and so, as in the proof of Theorem 8.8,

1
ζ − z

=
n−1∑
k=0

1
(ζ − z0)k+1

(z − z0)k +
(

z − z0

ζ − z0

)n 1
ζ − z

.

Consequently, we find

1
2πi

∫
C2

f(ζ)
ζ − z

dζ =
n−1∑
k=0

ak(z − z0)k + Rn(z)

where Rn(z) → 0 as n → ∞ for |z − z0| < R′
2, and ak is given by

ak =
1

2πi

∫
C2

f(ζ)
(ζ − z0)k+1

dζ (k = 0, 1, 2, . . . ).

Hence
1

2πi

∫
C2

f(ζ)
ζ − z

dζ =
∞∑

k=0

ak(z − z0)k, |z − z0| < R2.
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Observe that ak is not in general equal to f (k)(z0)/k! as was the case in the
Taylor theorem because f(z) may not be analytic at all points inside C2.

Next consider the second integral in (9.2). For ζ on C1 and z in the annulus
R′

1 < |z − z0| < R′
2, we have |ζ − z0| < |z − z0| and so we seek an expression

for −1/(ζ − z) in powers of (ζ − z0)/(z − z0). Accordingly, we write

− 1
ζ − z

=
1

(z − z0)[1 − (ζ − z0)/(z − z0)]

=
n−1∑
k=0

1
(ζ − z0)−k

(z − z0)−k−1 +
(

ζ − z0

z − z0

)n 1
z − ζ

=
−1∑

k=−n

1
(ζ − z0)k+1

(z − z0)k +
(

ζ − z0

z − z0

)n 1
z − ζ

.

Inserting this into the second integral in (9.2), we find that

− 1
2πi

∫
C1

f(ζ)
ζ − z

dζ =
−1∑

k=−n

ak(z − z0)k + Sn(z)

where

ak =
1

2πi

∫
C1

f(ζ)
(ζ − z)k+1

dζ, k = −1,−2, . . . ,

and

Sn(z) =
1

2πi

∫
C1

f(ζ)
z − ζ

(
ζ − z0

z − z0

)n

dζ.

Now for ζ on C1,

|z − ζ| = |z − z0 − (ζ − z0)| ≥ |z − z0| − |ζ − z0| = |z − z0| − R′
1.

Thus,

|Sn(z)| ≤ 1
2π

max
ζ∈C1

|f(ζ)| 1
|z − z0| − R′

1

(
R′

1

|z − z0|

)n

2πR′
1.

Since R′
1 < |z − z0|, Sn(z) → 0 as n → ∞. Consequently,

− 1
2πi

∫
C1

f(ζ)
ζ − z

dζ =
−1∑

k=−∞
ak(z − z0)k.

We have shown that for R′
1 < |z − z0| < R′

2,

f(z) =
∞∑

k=0

ak(z − z0)k +
−1∑

k=−∞
ak(z − z0)k, (9.3)

where
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ak =
1

2πi

∫
C2

f(ζ)
(ζ − z0)k+1

dζ (k = 0, 1, 2, . . . )

and

ak =
1

2πi

∫
C1

f(ζ)
(ζ − z0)k+1

dζ (k = −1,−2, . . . ).

Now choose any simple closed contour contained in the annulus that makes
a complete counterclockwise revolution about the point z0. Since f(ζ)/(ζ−z0)
is analytic in the region bounded by the closed contours C1 and C (C2 and
C), Cauchy’s integral formula implies that the coefficients may be computed
by replacing C1 and C2 by C. Thus,

ak =
1

2πi

∫
C

f(ζ)
(ζ − z0)k+1

dζ (k = 0,±1,±2,±3, . . . ). (9.4)

Finally, since R′
1 and R′

2 may be chosen arbitrarily close to R1 and R2 respec-
tively, the expression (9.3) (with ak defined by (9.4)) is valid for all z in the
annulus R1 < |z − z0| < R2.

Remark 9.2. Observe that the series of positive powers of z − z0 converges
everywhere inside the circle |z − z0| = R2, whereas the series of negative
powers of z − z0 converges everywhere outside the circle |z − z0| = R1. The
series of negative powers of z − z0 is called the principle part of the Laurent
expansion, while the series of positive powers is called the analytic part. •
Remark 9.3. The Laurent expansion, like the power series expansion for an-
alytic functions, is unique. Suppose that

f(z) =
∞∑

n=−∞
an(z − z0)n =

∞∑
n=−∞

bn(z − z0)n,

which is valid for R1 < |z−z0| < R2. Then each series converges uniformly on a
circle C contained in the annulus and enclosing z0. Multiplying by 1

2πi (z−z0)k

for any integer k, and integrating along C, we obtain

∞∑
n=−∞

an

2πi

∫
C

(z − z0)n+k dz =
∞∑

n=−∞

bn

2πi

∫
C

(z − z0)n+k dz. (9.5)

Since
1

2πi

∫
C

(z − z0)m dz =
{

1 if m = −1
0 otherwise ,

we get from (9.5)

a−k−1 = b−k−1 for each k ∈ Z.

Hence, ak = bk for every integer k showing that the Laurent expansion is
unique. •
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Remark 9.4. The coefficients of a Laurent series are usually not found by
the integral representation (9.4). In fact, determining the coefficients ak by
other means will enable us to evaluate the integral given in (9.4). Of particular
interest is the coefficient a−1, for this enables us to determine

∫
C

f(ζ) dζ. We
shall focus our attention on this part in later sections. •

We now give some examples to show different methods for computing the
coefficients of a Laurent series.

Example 9.5. To find the Laurent expansion for

f(z) =
sin z

z2
(|z| > 0),

we expand sin z in a Maclaurin series. This observation leads to

f(z) =
sin z

z2
=

1
z2

(
z − z3

3!
+

z5

5!
− · · ·

)
=

1
z
− z

3!
+

z3

5!
− · · · (|z| > 0).

Similarly, from the identity eu = 1 + u + u2/2! + u3/3! + · · · , we get

f(z) = e1/z = 1 +
1
z

+
1

2!z2
+

1
3!z3

+ · · · (|z| > 0). •
Example 9.6. Consider the function

f(z) =
1

z2 + 1
=

1
(z + i)(z − i)

,

which is analytic in C \{i,−i}. We first expand this function in a Laurent
series valid in a deleted neighborhood of z = i. To do this, we consider

1
z + i

=
1

2i + (z − i)
=

1
2i[1 + (z − i)/2i]

=
1
2i

∞∑
n=0

(−1)n

(
z − i

2i

)n

which is valid for |z − i| < 2. Hence, for 0 < |z − i| < 2, we have

f(z) =
1

(z + i)(z − i)
=

1
2i(z − i)

∞∑
n=0

(
− 1

2i

)n

(z − i)n

= −
∞∑

n=−1

(
− 1

2i

)n+2

(z − i)n

= −
∞∑

n=−1

(
i

2

)n+2

(z − i)n.

Similarly, to expand in a Laurent series valid in a deleted neighborhood of
z = −i, we first write
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1
z − i

=
1

−2i + (z + i)
= − 1

2i[1 − (z + i)/2i]
= − 1

2i

∞∑
n=0

(
z + i

2i

)n

,

which is valid for |z + i| < 2. Thus, for 0 < |z + i| < 2,

f(z) = −
∞∑

n=−1

(
1
2i

)n+2

(z + i)n = −
∞∑

n=−1

(
− i

2

)n+2

(z + i)n. •

Example 9.7. The function f(z) = 1/[(z − 1)(z − 2)] is analytic in C \{1, 2}.
As in the previous example, we can expand this function in a Laurent series
valid in a deleted neighborhood of z = 1 or z = 2. This observation leads to

f(z) = − 1
(z − 1)[1 − (z − 1)]

= −
∞∑

n=−1

(z − 1)n (0 < |z − 1| < 1)

and

f(z) =
1

(z − 2)[1 + (z − 2)]
=

∞∑
n=−1

(−1)n+1(z − 2)n (0 < |z − 2| < 1).

But we can also expand f(z) in Laurent series that are valid in different
regions. For example, f has three Laurent series centered at 0:

(i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2.

(i) Suppose |z| < 1. Then (as |z| < 1 implies |z| < 2), we get

f(z) =
1

z − 2
− 1

z − 1
= − 1

2(1 − z/2)
+

1
1 − z

=
∞∑

n=0

(
1 − 1

2n+1

)
zn,

which is the Maclaurin series expansion for f(z), i.e., no principal part.
(ii) Suppose 1 < |z| < 2. Then

f(z) = − 1
2(1 − z/2)

− 1
z(1 − 1/z)

= −1
2

∞∑
n=0

(z

2

)n

− 1
z

∞∑
n=0

(
1
z

)n

.

Here we are using the fact that |z/2| < 1 and |1/z| < 1. Hence

f(z) = −
−1∑

n=−∞
zn −

∞∑
n=0

1
2n+1

zn for 1 < |z| < 2.

(iii) Suppose |z| > 2. Then (as |z| > 2 implies |2/z| < 1 and |1/z| < 1)

f(z) =
1

z(1 − 2/z)
− 1

z(1 − 1/z)

=
1
z

∞∑
n=0

(
2
z

)n

− 1
z

∞∑
n=0

(
1
z

)n

=
−1∑

n=−∞

(
1

2n+1
− 1

)
zn

which has no analytic part. •
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Questions 9.8.

1. What similarities are there between Laurent series and power series?
2. If the Laurent series for f(z) converges on the boundary of an annulus,

is f(z) analytic on the boundary?
3. Where does a Laurent series converge uniformly?
4. Can a function be analytic only in a rectangular strip?
5. Can f(z) and f(1/z) be analytic at the same set of points?
6. What can be said about the sum of two Laurent series? The product?
7. If f(z) =

∑∞
n=−∞ an(z − z0)n, under what circumstances does

f ′(z) =
∞∑

n=−∞
nan(z − z0)n−1?

8. Does the function f(z) = z have Laurent series valid in some domain
0 < |z| < δ? How about if f(z) = Re z or Im z or |z|2?

Exercises 9.9.

1. Expand f(z) =
1

(z + 1)(z2 + 2)
in Laurent series valid for

(i) 1 < |z| <
√

2 (ii) |z| >
√

2 (iii) |z| < 1.

2. Expand f(z) =
3z − 1

z2 − 2z − 3
in Laurent series valid for

(i) 1 < |z| < 3 (ii) |z| > 3 (iii) |z| < 1.

3. Find the Laurent series for f(z) =
z − 12

z2 + z − 6
valid for

(i) 1 < |z − 1| < 4 (ii) |z − 1| > 1 (iii) |z − 1| < 4.

4. Expand f(z) = ez2
+ e1/z2

in a Laurent series valid for |z| > 0.

5. For 0 < |a| < |b|, expand f(z) =
1

(z − a)(z − b)
in Laurent series valid

for
(i) |z| < |a| (ii) |a| < |z| < |b|
(iii) |z| > |b| (iv) 0 < |z − a| < |a − b|
(v) 0 < |z − b| < |a − b|.

6. If 0 < |a| < |b|, expand

f(z) =
1

z(z − a)(z − b)

as a Laurent series valid in

(i) 0 < |z| < |a| (ii) |a| < |z| < |b| (iii) |z| > |b|.
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7. Expand

f(z) =
z2 + 9z + 11
(z + 1)(z + 4)

as a Laurent series about z = 0 valid when

(i) |z| < 1 (ii) 1 < |z| < 4 (iii) |z| > 4.

8. Find the principal part for the following Laurent series.

(a)
z2

z4 − 1
(0 < |z − i| <

√
2)

(b)
z2

z4 − 1
(0 < |z + i| <

√
2)

(c)
ez

z4
(|z| > 0)

(d)
sin z

z4
(|z| > 0)

(e)
1

tan2 z
− 1

z2
(0 < |z| < π/2).

9. Expand the following in a Laurent series valid in the region indicated.

(a) zne1/z (|z| > 0) (b) e1/(z−1) (|z| > 1).
10. Express sin z sin(1/z) in a Laurent series valid for |z| > 0.
11. Use series division to find the principal part in a neighborhood of the

origin for the function ez/(1 − cos z)2.

9.2 Classification of Singularities

A single-valued function is said to have a singularity at a point if the function
is not analytic at the point while every neighborhood of that point contains
at least one point at which the function is analytic. For instance, f(z) = z is
nowhere analytic. Note that we do not say that every point of C is a singularity
for f(z). Basically, there are two types of singularities

(i) isolated singularity
(ii) non-isolated singularity.

If the function is analytic in some deleted neighborhood of the point, then the
singularity is said to be isolated. For example, consider

(i) f1(z) =
{

z + 1 for z �= 0
3 for z = 0

(ii) f2(z) = 1/z for z �= 0
(iii) f3(z) = sin(1/z) for z �= 0.
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For each of the functions defined above, the point z = 0 is an isolated singu-
larity.

Recall from Section 4.3 that f(z) = Log z, the principal logarithm, is
analytic for z ∈ Ω = C \ {x + iy : y = 0, x ≤ 0}. The point z = 0 is a branch
point of Log z since every deleted neighborhood of z = 0 contains points on
the negative real axis. We say that a singularity at z = z0 of f is non-isolated
if every neighborhood of a contains at least one singularity of f other than
a. For example, z = 0 as well as every point on the negative real axis is a
non-isolated singularity of the principal logarithm given by

Log z = ln |z| + iArg z, −π < Arg z < π,

since every neighborhood of z = x (x ≤ 0) contains points on the negative
real axis on which Log z is not analytic. The behavior of a function f(z) near
an isolated singularity z0 can be described by considering the limiting value
of limz→z0 f(z). Then there are three possibilities:

(i) f(z) may be bounded in a deleted neighborhood of z0. For instance,
in the above example, f1(z) is bounded in a deleted neighborhood of
the origin. This is an uninteresting example because f1(z) can be made
analytic by defining f1(0) = 1. Another example of this type may be
given by

g1(z) =
sin z

z
for z �= 0.

(ii) f(z) may approach ∞ as z approaches z0. For instance,

f2(z) =
1
z
→ ∞ as z → 0.

Another example of this type may be given by g1(z) = 1
zn (z �= 0),

where n ∈ N is fixed.
(iii) f(z) may satisfy neither (i) nor (ii). For instance, consider

f(z) = e1/z, z �= 0.

For z = x, x �= 0 real, note that

lim
x→0+

e1/x = ∞ and lim
x→0−

e1/x = 0.

Moreover, for z = iy (y ∈ R \ {0}), we note that

f(iy) = e1/(iy) = e−i/y

which lies always on the unit circle. Consequently, limz→0 e1/z does not
exist. Thus, in a neighborhood of the origin, e1/z is neither bounded nor
does it approach ∞. A similar argument continues to hold for sin(1/z)
in the neighborhood of the origin. Indeed, we consider two sequences:
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zn = i/n → 0 and z′n = 1/n → 0 as n → ∞.

Then

sin(1/zn) = sin(−in) =
en − e−n

2i
→ ∞,

whereas {sin(1/z′n)} = {sin n} is clearly a bounded sequence. It follows
that z = 0 is an essential singularity of sin(1/z).

It follows in general that if a function has one non-isolated singularity, then
it will have many singularities, although not necessarily non-isolated. This is
demonstrated by the following example. The function

f(z) =
1

sin(1/z)

has a singularity at the origin because limz→0 f(z) does not exist either as
a finite limit or as an infinite limit. Note that limz→0 sin(1/z) does not exist
because

zn =
1

nπ
→ 0 and z′n =

1
nπ + π/2

→ 0,

whereas sin(zn) = 0 and sin(z′n) = cos(nπ) = (−1)n. Furthermore, the zeros
of sin(1/z) are given by zn = 1/(nπ), n ∈ Z \{0}. These points are also
singularities of f(z). Notice that |zn| → 0 as n → ∞ so that each deleted
neighborhood of the origin contains a singularity of f(z). Consequently, the
singularity at z = 0 is a non-isolated singularity of f(z).

Observe that the “clever” way we phrased (iii) makes every isolated sin-
gularity satisfy either (i), (ii) or (iii).

Each of the three kinds of isolated singularities have important character-
izations which will be obtained in the next three theorems.

Theorem 9.10. (Riemann’s Theorem) Suppose that f(z) has an isolated
singularity at z = z0 and is bounded in some deleted neighborhood of z0. Then
f(z) can be defined at z0 in such a way as to be analytic at z0.

Proof. Assume the hypothesis. Then, for some R > 0, f(z) is analytic in the
punctured disk

0 < |z − z0| ≤ R.

Given a point z1 inside this disk, choose r > 0 so that r < |z1 − z0| < R.
The function f(z) is analytic in the annulus bounded by the two circles C :
|z−z0| = R and C1 : |z−z0| = r (see Figure 9.2). Hence by Cauchy’s integral
formula,

f(z1) =
1

2πi

∮
C

f(ζ)
ζ − z1

dζ − 1
2πi

∮
C1

f(ζ)
ζ − z1

dζ. (9.6)

Observe that the value of (9.6) is independent of the choice of r. We will prove
that the last integral on the right of (9.6) is zero by showing that its absolute
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Figure 9.2.

value can be made arbitrarily small for sufficiently small values of r. Since
f(z) is bounded in the disk, say |f(z)| ≤ M , we have∣∣∣∣ 1

2πi

∫
C1

f(ζ)
ζ − z1

dζ

∣∣∣∣ ≤ M

2π

∫
C1

|dζ|
|ζ − z1|

≤ M

2π

2πr

|z1 − z0| − r
→ 0 as r → 0,

and so (9.6) may be written as

f(z1) =
1

2πi

∫
C

f(ζ)
ζ − z1

dζ. (9.7)

Since z1 is arbitrary in the disk 0 < |z − z0| < R, we may write (9.7) as

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ, (9.8)

valid for all z, 0 < |z − z0| < R. In the proof of Theorem 8.3 it was shown
that the integral on the right side of (9.8) represents an analytic function for
|z − z0| < R. Hence by defining

f(z0) =
1

2πi

∫
C

f(ζ)
ζ − z0

dζ,

the function f(z) becomes analytic in the whole disk |z − z0| < R.

Corollary 9.11. If f(z) has an isolated singularity at z = z0 and is bounded
in some neighborhood of z0, then limz→z0 f(z) exists.

Proof. Since an analytic function is continuous, f(z0) had to have been defined
in Theorem 9.10 in such a way that limz→z0 f(z) = f(z0). In particular,
limz→z0 f(z) exists.
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We have shown that functions satisfying the conditions of Theorem 9.10
have a singularity simply because they have not been defined “properly” at
the point in question. If f(z) has an isolated singularity at z0, the singularity
is said to be a removable singularity if limz→z0 f(z) exists. Theorem 9.10 says
that a function which is analytic and bounded in a deleted neighborhood of
a point has at worst a removable singularity at the point. For all practical
purposes, we may consider such a function to be analytic. Thus when we
speak of (sin z)/z as an entire function, it will be understood that f(0) =
limz→0(sin z)/z = 1. Note that the Maclaurin expansion for this function is

f(z) =
sin z

z
=

1
z

(
z − z3

3!
+

z5

5!
+ · · ·

)
= 1 − z2

3!
+

z4

5!
+ · · · , |z| > 0.

A function f(z), analytic in a deleted neighborhood of z = z0, has a pole
of order k (k a positive integer) if

lim
z→z0

(z − z0)kf(z) = A �= 0,∞.

We now characterize singularities of the form (ii) quoted in the beginning.

Theorem 9.12. If f(z) has an isolated singularity at z = z0 and f(z) → ∞
as z → z0, then f(z) has a pole at z = z0.

Proof. Suppose that f(z) → ∞ as z → z0. Then for a given R > 0 there exists
a δ > 0 such that f(z) is analytic for 0 < |z − z0| < δ and

|f(z)| > R whenever 0 < |z − z0| < δ.

In particular, f(z) �= 0 for 0 < |z−z0| < δ and so, g(z) = 1/f(z) is analytic and
bounded by 1/R in this deleted neighborhood of z0. By Theorem 9.10, g(z) has
a removable singularity at z0, and we may write g(z) as (using limz→z0 g(z) =
0)

g(z) =
1

f(z)
= a1(z − z0) + a2(z − z0)2 + · · · , 0 < |z − z0| < δ.

Moreover, g(z) �= 0 for 0 < |z − z0| < δ, and so not all the coefficients of g(z)
are zero. This means that there is a k ≥ 1 such that ak is the first nonzero
coefficient of g(z). Then

g(z) =
1

f(z)
= ak(z − z0)k + ak+1(z − z0)k+1 + · · · ,

so that
1

(z − z0)kf(z)
= ak + ak+1(z − z0) + · · · → ak as z → z0, (9.9)

and therefore,

lim
z→z0

(z − z0)kf(z) =
1
ak

.

Hence, by the definition, f(z) has a pole of order k at z = z0.
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Remark 9.13. If f(z) has a pole at z0, it follows from the definition that
there exists a k ≥ 1 such that (z − z0)kf(z) → A �= 0 as z → z0. Thus, for
z → z0, ∣∣∣∣ 1

f(z)

∣∣∣∣ =
∣∣∣∣ (z − z0)k

(z − z0)kf(z)

∣∣∣∣ →
∣∣∣∣ 0
A

∣∣∣∣ = 0 as z → z0

and hence, f(z) → ∞ as z → z0. Thus, Theorem 9.12 gives a necessary and
sufficient condition for an isolated singularity to be a pole. •
Corollary 9.14. If f(z) has a pole at z = z0, then f(z) may be expressed as

f(z) =
∞∑

n=−k

bn(z − z0)n,

where k is the order of the pole.

Proof. We use the notation of Theorem 9.12. By (9.9), the function

1
f(z)(z − z0)k

= ak + ak+1(z − z0) + · · · (ak �= 0)

is analytic at z = z0. Since ak �= 0, a continuity argument shows that there is
a neighborhood of z0 in which

1
f(z)(z − z0)k

�= 0.

Hence, f(z)(z − z0)k is analytic at z0 and the expansion

f(z)(z − z0)k =
∞∑

m=0

cm(z − z0)m

(
c0 =

1
ak

�= 0
)

is valid in some neighborhood of z0. That is,

f(z) =
∞∑

m=0

cm(z − z0)m−k. (9.10)

Upon setting n = m − k and bn = cm+k in (9.10), we get the desired form.

An isolated singularity that is neither removable nor a pole is said to be an
(isolated) essential singularity. Equivalently, a function f(z) which is analytic
in a deleted neighborhood of z = z0 has an essential singularity at z = z0 if
there exists no nonnegative integer k for which limz→z0(z − z0)kf(z) exists
(either as a finite value or as an infinite value). The behavior of a function in
the neighborhood of an isolated essential singularity is most surprising.

Theorem 9.15. (Casorati–Weierstrass) If f(z) has an essential singularity
at z = z0, then f(z) comes arbitrarily close to every complex value in each
deleted neighborhood of z0.
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Proof. Let f have an essential singularity at z0. Then f is analytic throughout
a deleted neighborhood of z0. Suppose, for some complex number a, that

|f(z) − a| ≥ ε > 0

for all z in a punctured disk 0 < |z − z0| < δ. Set g(z) = 1/(f(z) − a). Then

|g(z)| =
∣∣∣∣ 1
f(z) − a

∣∣∣∣ ≤ 1
ε

for 0 < |z − z0| < δ.

Thus, by Theorem 9.10, g(z) has a removable singularity at z = z0 and we
may write

g(z) =
1

f(z) − a
= a0 + a1(z − z0) + a2(z − z0)2 + · · · .

Observe that limz→z0 1/(f(z) − a) = a0. There are two cases to consider.

Case 1) a0 �= 0: Then limz→z0 f(z) = 1/a0 + a, and f(z) has a removable
singularity at z = z0.

Case 2) a0 = 0: Suppose ak is the first nonzero coefficient. Then

1
(f(z) − a)(z − z0)k

= ak + ak+1(z − z0) + · · · .

In this case,

lim
z→z0

(z − z0)k(f(z) − a) = lim
z→z0

(z − z0)kf(z) =
1
ak

,

and f(z) has a pole of order k at z = z0. Since our hypothesis excludes
both cases, the inequality |f(z) − a| ≥ ε > 0 cannot be true and the desired
conclusion follows.

Corollary 9.16. Suppose f(z) has an essential singularity at z = z0. Given
any complex number a, there exists a sequence {zn} such that zn → z0 and
f(zn) → a.

Proof. Choose a sequence {δn} for which δn > 0 for each value of n and
limn→∞ δn = 0. By Theorem 9.15, we can find a sequence of points {zn} such
that |f(zn) − a| < 1/n for 0 < |zn − z0| < δn. Thus, f(zn) → a as zn → z0.

A generalization of Theorem 9.15 is described by Picard in the following
form. For details of this result, we refer to advanced texts, see Hille [Hi].

Theorem 9.17. (Picard’s Great Theorem) In the neighborhood of an iso-
lated essential singularity, a function assumes each complex value, with one
possible exception, infinitely often.
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The function e1/z has an isolated essential singularity at z = 0, and never
assumes the value 0. We wish to show that e1/z assumes every other value in
a neighborhood of the origin infinitely often. The behavior near an essential
singularity is strange. Indeed, if c �= 0, then the solutions of

e1/z = c

are given by

zn =
1

log c
=

1
Log c + 2nπi

, n ∈ Z.

Observe that infinitely many zn are contained in every neighborhood of the
origin.

Isolated singularities at z = ∞. We may also refer to the point at ∞ as
being an isolated singularity. A function f(z) has an isolated singularity at
z = ∞ if f(z) is analytic in a deleted neighborhood of ∞, that is there exists
a real number R such that f(z) is analytic for R < |z| < ∞. Note that f(z)
is analytic for |z| > R if and only if f(1/z) is analytic for |1/z| < R. Hence,
f(z) has an isolated singularity at z = ∞ if and only if f(1/z) has an isolated
singularity at z = 0. Moreover, we make the definition that the singularity of
f(z) at z = ∞ is removable, a pole, or essential according as the singularity of
f(1/z) at z = 0 is removable, a pole, or essential. For example, the function

1. f(z) = z2+1 has a pole of order 2 at z = ∞ because f(1/z) = (1/z2)+1
has a pole of order 2 at z = 0.

2. f(z) = ez has an isolated essential singularity at z = ∞ because
f(1/z) = e1/z has an isolated essential singularity at z = 0.

3. f(z) = 1/[z(z2 + 4)] has simple poles at z = 0,±2i. Now

f(1/z) =
z3

1 + 4z2
,

showing that z = 0 is a point of analyticity for f(1/z). In fact, it has
zero of order 3 at z = 0.

With this definition, we can examine the behavior of entire functions. If
f(z) =

∑k
n=0 anzn is a polynomial of degree k, then

g(z) = f

(
1
z

)
=

ak

zk
+

ak−1

zk−1
+ · · · +

a1

z
+ a0 and lim

z→0
zkf

(
1
z

)
= ak �= 0

so that g(z) has a pole of order k at z = 0. Hence, f(z) has a pole of order k at
z = ∞. Theorem 8.38 is now seen to be a special case of Theorem 9.15. That
is, the polynomial f(z) → ∞ as z → ∞ because f(z) has a pole at z = ∞.
Note that the entire function f(z) has a pole of order k at z = ∞ if and only
if

lim
z→0

zkf

(
1
z

)
= lim

z→∞
f(z)
zk

= A �= 0,∞. (9.11)
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Moreover, if (9.11) is satisfied, then (by Theorem 8.35) f(z) is a polynomial
of degree k. We summarize the discussion as

Theorem 9.18. Let f(z) be a nonconstant entire function. Then f(z) is a
polynomial if and only if f(z) → ∞ as z → ∞.

Thus a transcendental entire function cannot have a pole at z = ∞. That
is, transcendental entire functions must have essential singularities at z = ∞.

An interesting comparison can now be made between Theorem 8.31 and
Theorem 9.15. Theorem 8.31 merely asserts that an entire function comes
arbitrarily close to every complex value. Theorem 9.15 says that a transcen-
dental entire function comes arbitrarily close to every complex value outside
of every circle |z| = R. Of course the behavior of a non-transcendental entire
function (a polynomial) has already been fully discussed.

In the Laurent series expansion (see Theorem 9.1), if R1 = 0, then the
point z0 becomes an isolated singularity of f(z). In view of this, the Laurent
series allows us to classify the type of isolated singularity at z0. Suppose that
f has an isolated singularity at z0. Then f(z) is analytic throughout a deleted
neighborhood of z0, that is f(z) possesses a Laurent series expansion

f(z) =
−1∑

n=−∞
an(z − z0)n +

∞∑
n=0

an(z − z0)n

valid for 0 < |z − z0| < δ for some δ > 0. Then the following situations arise.

(i) No principal part: In this case an = 0 for all n < 0. So the above
Laurent series simply reduces to

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · · , 0 < |z − z0| < δ.

It follows that limz→z0 f(z) = a0, i.e., f is bounded in a deleted neigh-
borhood of z0. In other words, f has a removable singularity at z0 if
and only if an = 0 for all n < 0.

(ii) The principal part consists of a finite number of terms: In this
case, an = 0 for all n < −m and a−m �= 0 for some m ≥ 1. So the
Laurent series about z0 reduces to

f(z) =
a−m

(z − z0)m
+ · · · +

a−1

z − z0
+

∞∑
n=0

an(z − z0)n, (9.12)

which is valid for 0 < |z − z0| < δ so that

lim
z→z0

(z − z0)mf(z) = a−m �= 0.

If we rewrite (9.12) in the form



302 9 Laurent Series and the Residue Theorem

f(z) =
a−m

(z − z0)m

[
1 +

a−m+1

a−m
(z − z0) + · · ·

+
a−1

a−m
(z − z0)m−1 +

∞∑
n=0

an

a−m
(z − z0)n+m

]

=
a−m

(z − z0)m
[1 + g(z)] ,

we see that g(z) → 0 as z → z0. Thus, given ε = 1/2, there exists a
δ > 0 such that

|g(z)| < 1/2 whenever |z − z0| < δ

and therefore, |1 + g(z)| ≥ 1 − |g(z)| ≥ 1/2 for |z − z0| < δ. This
observation shows that

|f(z)| ≥ |a−m|
|z − z0|m

|1 + g(z)| >
|a−m|

2|z − z0|m
>

|a−m|
2δm

which, for δ → 0, implies that f(z) → ∞ as z → z0. In particular, f(z)
behaves like a−m/(z − z0)m for z near z0. In other words, f(z) has a
pole of order m at z0 if and only if there exists an m ∈ N such that
a−m �= 0 and an = 0 for all n less than −m.

(iii) The principal part consists of infinitely many terms: In this case,
an �= 0 for infinitely many negative integer values of n. Thus by a process
of elimination, the principal part has infinitely many terms if and only
if the singularity at z0 is an essential singularity.

From the above discussion, when expanding in a Laurent series about an
isolated singularity, we are sometimes interested only in the principal part. If
f(z) has a simple pole at z = z0, then the principal part is particularly easy
to determine. For then limz→z0(z − z0)f(z) must exist, and we may set

(z − z0)f(z) = a−1 + a0(z − z0) + a1(z − z0)2 + · · · (a−1 �= 0).

The principal part is then seen to be a−1/(z − z0).

Examples 9.19. (i) For instance, consider f(z) = z/(z2+4). Suppose that
we wish to find the principal part of the Laurent expansion valid in a
deleted neighborhood of z = 2i. Since

lim
z→2i

(z − 2i)f(z) = lim
z→2i

(z − 2i)z
(z + 2i)(z − 2i)

=
1
2
,

f(z) has a simple pole at z = 2i. Therefore,

f(z) =
1/2

z − 2i
+ g(z),

where g(z) is analytic at z = 2i.
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(ii) If f(z) = 1/(z4 + 1), then the solution set of z4 + 1 = 0 is given by

zk = (−1)1/4 = ei(π+2kπ)/4, k = 0, 1, 2, 3,

and these are the simple poles of f(z). For example, as in the previous
example, we get

lim
z→zk

z − zk

z4 + 1
= lim

z→zk

1
4z3

=
1

4z3
k

=
zk

4z4
k

= −zk

4
.

Then,

f(z) =
−zk/4
z − zk

+ gk(z) for k = 0, 1, 2, 3,

where each gk(z) is analytic at z = zk. In particular, at z0 = eiπ/4

f(z) =
−(1 + i)/

√
2

4(z − eiπ/4)
+ g0(z),

where g0(z) is analytic at z0 = eiπ/4 = (1 + i)/
√

2.
(iii) Let us now find all singularities for the function f(z) = cot πz, and

determine the principal part of the Laurent expansion about each sin-
gularity. Since sinπz has simple zeros at z = n (n ∈ Z), the function
f(z) = cos πz/ sin πz has simple poles at z = n. In a deleted neighbor-
hood of z = n, we have

f(z) =
a−1

z − n
+ gn(z), 0 < |z − z0| < 1,

where gn(z) is analytic at z = n. It remains to determine a−1. From the
identity

sinπz = (−1)n sin π(z − n),

we get (as f has simple pole at each z = n)

a−1 = lim
z→n

(z − n)f(z) =
1
π

lim
z→n

π(z − n)
sin π(z − n)

cos πz

(−1)n
=

1
π

and the principal part of f(z) at each z = n is

1/π

z − n
.

(iv) If f(z) =
2 + ez

sin z + z cos z
, then z = 0 is an isolated singularity and

lim
z→0

zf(z) = lim
z→0

2 + ez

z−1 sin z + cos z
=

3
2
�= 0,

which shows that z = 0 is a simple pole for f(z). Similarly, we see that
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g(z) =
1 + sin z

cos z − 1 + sin z

has a simple pole at z = 0, because

lim
z→0

zg(z) = lim
z→0

1 + sin z
cos z − 1

z
+

sin z

z

= 1.

(v) Let us discuss the nature of the singularity of f(z) = (z + 1)−4 sin πz
at z = −1 and write down the principal part of it. To do this, we first
observe that f(z) has a pole of order 3 at z = −1, and f is analytic for
0 < |z + 1| < ∞. It follows that

f(z) = (z + 1)−4
∞∑

n=0

an(z + 1)n,

where an = g(n)(−1)/n!, with g(z) = sinπz. Note that

g′(z) = π cos πz = π sin(πz + π/2),
g′′(z) = π2 cos(πz + π/2) = π2 sin(πz + 2(π/2)),

... =
...

g(n)(z) = πn sin(πz + nπ/2),

and so

g(n)(−1) = πn sin(−π+nπ/2) =
{

0 if n = 2k
−πn(−1)k if n = 2k + 1, k = 0, 1, . . . .

Thus,

f(z) = (z + 1)−4
∞∑

k=0

(−1)k+1π2k+1

(2k + 1)!
(z + 1)2k+1

so that f(z) has a pole of order 3 at z = −1. From this expansion, one
can easily write down the principal part. •

Examples 9.20. We wish to characterize all rational functions which have a
removable singularity at ∞.

To do this, we let f(z) = p(z)/q(z), where p and q are polynomials. Then

f(z) has a removable singularity at ∞

⇐⇒ f(1/z) has a removable singularity at z = 0
⇐⇒ |f(1/z)| ≤ M for 0 < |1/z| < ε, for some ε > 0 and M > 0
⇐⇒ |f(z)| ≤ M for |z| > 1/ε

⇐⇒ deg p(z) ≤ deg q(z).
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Suppose that we wish to characterize those rational functions which have
a pole of order k at ∞. To do this, we proceed as follows: set f(z) = p(z)/q(z),
where p and q are polynomials of degree m and n, respectively. Then, with
p(z) =

∑m
j=0 pjz

j and q(z) =
∑n

j=0 qjz
j ,

f(z) has a pole of order k at ∞

⇐⇒ f(1/z) has a pole of order k at z = 0

⇐⇒ f(1/z) =
p(1/z)
q(1/z)

=
∞∑

j=−k

ajz
j

⇐⇒
m∑

j=0

pj
1
zj

=

⎛
⎝ n∑

j=0

qj
1
zj

⎞
⎠

⎛
⎝ ∞∑

j=−k

ajz
j

⎞
⎠

⇐⇒ m = n + k, i.e., k = deg p(z) − deg q(z). •
Division by power series furnishes us with another method for determining

the principal part. Suppose

f(z) =
a0 + a1z + · · ·
b0 + b1z + · · · (b0 �= 0).

Then f(z) is analytic at z = 0 and may be expanded in a series of the form

a0 + a1z + · · ·
b0 + b1z + · · · = c0 + c1z + · · · ,

which is valid in a neighborhood of origin. Using series multiplication, previ-
ously discussed, we have

a0 +a1z + · · · = (b0 + b1z + · · · )(c0 + c1z + · · · ) = b0c0 +(b1c0 + c1b0)z + · · · .

We can now compute the ck recursively by the equations

a0 = b0c0,

a1 = b0c1 + b1c0,

...
an = b0cn + b1cn−1 + · · · + bnc0.

This method may be viewed as “long division”. That is,

a0

b0
+ · · ·

(b0 + b1z + · · · ) a0 + a1z + · · ·
a0 +

a0b1

b0
z + · · ·

.
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We shall use this method to find the principal part of

f(z) =
π cot πz

z4

valid in a deleted neighborhood of the origin. We have

f(z) =
π cos πz

z4 sinπz
=

1
z5

(
1 − (πz)2/2! + (πz)4/4! − · · ·
1 − (πz)2/3! + (πz)4/5! − · · ·

)

=
1
z5

(
1 +

π2

3
z2 − π4

45
z4 + · · ·

)
.

Thus the principal part of f(z) is

1
z5

+
π2/3
z3

− π4/45
z

.

Questions 9.21.

1. Can a function have infinitely many isolated singularities in the plane?
In a bounded region? In a compact set?

2. Given a function f(z), does there exist a real number M such that no
pole of f(z) has order greater than M?

3. Can a function have poles at a preassigned sequence of points?
4. Can a function have essential singularities at the preassigned sequence

of points?
5. Can an entire function omit the value 7 − 2i and assume every other

value infinitely often?
6. Why are the points 0 and ∞ so often different from all other values?
7. What kind of function has no singularities in the extended plane?
8. How do the singularities of f(z) compare with those of 1/f(z)? With

those of f(1/z)? With those of 1/f(1/z)?
9. Can a pole be a non-isolated singularity?

10. How does Picard’s great theorem compare with Picard’s theorem stated
in Section 8.2?

11. If f(z) has a pole of order k at z0, what are the most and least number
of terms for the principal part of the Laurent expansion?

12. When can one have an accumulation of singularities?
13. If a function has an absolute value greater than 1 near an isolated sin-

gularity, what kind of singularity can it be?
14. If f(z) has an isolated singularity at z = 0, what can you say about f

if limz→0 |z|2/3|f(z)| = 2?

Exercises 9.22.

1. Suppose that f(z) has an isolated singularity at z = z0, and that
limz→z0(z − z0)αf(z) = M �= 0,∞. Prove that α must be an integer.
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2. If f(z) is analytic in a deleted neighborhood of the origin and

lim
z→0

|zf(z)| = 0,

show that the origin is a removable singularity of f(z).
3. Show that tan z does not assume the value ±i. Does this contradict

Picard’s theorem?
4. Find all singularities for the following functions, and describe their na-

ture.

(a) tan z (b)
1

e1/z + 1
(c)

1
z2(ez − 1)

(d)
1

sin z − cos z
(e) ez+1/z (f)

1
cos(1/z)

(g)
(z − 1)1/2

z + 1
(h)

sin4 z

z4
+ cos(3z) (i)

z

ez − 1
.

5. Discuss the singularities of

f(z) =
z3(z2 − 1)(z − 2)2

sin2(πz)
e1/z2

.

Classify which of these are poles, removable singularities and essential
singularity.

6. Describe the singularity at z = ∞ for the following functions.

(a)
2z2 + 1
3z2 − 10

(b)
z2

z + 1
(c)

z2 + 10
ez

(d)
ez

z2 + 10
(e) tan z − z (f)

1
z

+ sin z.

7. Given arbitrary distinct complex numbers z0, z1 and z2, construct a
function f(z) having a removable singularity at z = z0, a pole of order
k at z = z1, and an essential singularity at z = z2.

8. Show that f(z) has no singularities in the extended plane other than
poles if and only if f(z) is a rational function (quotient of two polyno-
mials).

9. If f(z) has poles at a sequence of points {zn}, and zn → z0, show that
f(z) does not have a pole at z = z0. Illustrate this fact by a concrete
example.

10. Suppose f(z) has a pole of order m at z = z0, and P (z) is polynomial
of degree n. Show that P (f(z)) has a pole of order mn at z = z0.

11. Determine the order of the pole at z = 0 for

(i) f(z) =
z

sin z − z + z3/3!
(ii) f(z) =

z

(sin z − z + z3/3!)2
.

12. Use “long division” method (or other method) to find the principal part
in the Laurent series of f(z) = 1/(1 − cos z) about z = 0.
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13. Let f(z) be analytic in the disk |z| < R (R > 1) except for a simple
pole at a point z0, |z0| = 1. Consider the expansion f(z) = a0 + a1z +
a2z

2 + · · · , and show that limn→∞(an/an+1) = z0.
14. Consider, in a neighborhood of the origin, the various determinations of

(1 + z)1/z.
(a) Show that one of them is analytic in |z| < 1, and denote it by f0(z).
(b) Determine a0, a1 and a2 in the expansion f0(z) = a0 +a1z +a2z

2 +
· · · .

(c) Let f(z) be a determination of (1 + z)1/z other than f0(z). Find
the nature of g(z) = f(z)/f0(z), and give its Laurent expansion for
|z| > 0.

9.3 Evaluation of Real Integrals

If f(z) is analytic in a deleted neighborhood of z0, then by Laurent’s theorem
we may write

f(z) =
∞∑

n=−∞
an(z − z0)n (0 < |z − z0| < δ),

where

an =
1

2πi

∫
C

f(z)
(z − z0)n+1

dz (n ∈ Z).

Here C is any simple closed contour enclosing z0 and contained in the neigh-
borhood. In particular,

a−1 =
1

2πi

∫
C

f(z) dz, i.e.,
∫

C

f(z) dz = 2πia−1. (9.13)

Therefore, by hook or crook, we should be able to compute a−1. The coefficient
a−1 is called the residue of f(z) at z0 and is denoted by

Res [f(z); a].

Equation (9.13) says that evaluating a certain integral of f(z) around C that
encloses no other singularity other than z0 is akin to determining a certain
coefficient in Laurent series.

Examples 9.23. (i) As e1/z = 1 + 1/z + 1/(2!z2) + · · · for |z| > 0,
Res [e1/z; 0] = 1 and so, we have∫

|z|=1

e1/z dz = 2πi.

More generally,∫
C

exp
(

1
zk

)
dz =

{
0 if k �= 1

2πi if k = 1 , k ∈ Z,

where C is a simple closed contour enclosing the origin.
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(ii) As

sin
(

1
z2

)
=

1
z2

− 1
3!

(
1
z2

)3

+
1
5!

(
1
z2

)5

− · · · for |z| > 0,

we have Res [sin(1/z2); 0] = 0, and so∫
|z|=1

sin
1
z2

dz = 0.

More generally,∫
C

sin
(

1
zk

)
dz =

{
0 if k �= 1

2πi if k = 1 , k ∈ Z,

where C is a simple closed contour enclosing the origin.
(iii) For z �= 0, we have Res [z2 sin(1/z2); 0] = −1/6. Therefore∫

|z|=1

z2 sin
1
z

dz = 2πi

(
−1

6

)
= −πi

3
,

where C is a simple closed contour enclosing the origin.

(iv) To evaluate I =
∫
|z|=π

ez − 1
1 − cos z

dz, we consider

f(z) =
ez − 1

1 − cos z
=

ez − 1
2 sin2(z/2)

and note that

lim
z→0

z

(
ez − 1

2 sin2(z/2)

)
= lim

z→0
2
(

z/2
sin(z/2)

)2
ez − 1

z
= 2.

Thus, z = 0 is a simple pole for f(z). Note also that f(z) has no other
singularity inside the circle |z| = π. Hence, I = 4πi.

(v) To evaluate I =
∫
|z|=π

sin z

1 − cos z
dz, we may rewrite the integral as

I =
∫
|z|=π

2 sin(z/2) cos(z/2)
2 sin2(z/2)

dz

=
∫
|z|=π

cos(z/2)
sin(z/2)

dz

= 2πiRes
[
cos(z/2)
sin(z/2)

; 0
]

= 2πi lim
z→0

z
cos(z/2)
sin(z/2)

= 4πi.
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(vi) To evaluate I =
∫ 2π

0
eeiθ−inθ dθ for n ∈ Z, we first rewrite it in the form

I =
∫
|z|=1

ez

zn

dz

iz
(z = eiθ, dz = iz dθ)

=
1
i

∫
|z|=1

ez

zn+1
dz

=

{
0 if n = −1,−2,−3, . . . (by Cauchy’s theorem)

1
i

2πi

n!
if n = 0, 1, 2, . . . (by Cauchy’s integral formula).

•

Consider now the following generalization of (9.13).

Theorem 9.24. (Residue Theorem) Suppose f(z) is analytic inside and on
a simple closed contour C except for isolated singularities at z1, z2, z3, . . . , zn

inside C. Then ∫
C

f(z) dz = 2πi

n∑
k=1

Res [f(z); zk].

Proof. About each singularity zk construct a circle Ck contained in C and
such that Cj ∩ Ck = ∅ when j �= k (see Figure 9.3). By Cauchy’s integral
formula for multiply connected domains,∫

C

f(z) dz =
∫

C1

f(z) dz +
∫

C2

f(z) dz + · · · +
∫

Cn

f(z) dz,

where the integration along each interior contour is counterclockwise. Setting
C = Ck in (9.13), we see that

a
(k)
−1 :=

1
2πi

∫
Ck

f(z) dz = Res [f(z); zk]

for each k, and the result follows.

As a matter of fact, Cauchy’s integral formula is a special case of the
residue theorem. To see this, we suppose that f(z) is analytic inside and on a

C1

C2

C3 C4

Cn

C

Figure 9.3.
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simple closed contour C containing z0. Then g(z) = f(z)/(z−z0) has a simple
pole at z0 provided that f(z0) �= 0. The residue of g(z) at z0 is given by

Res [g(z); z0] = lim
z→z0

(z − z0)g(z) = f(z0),

and so ∫
C

g(z) dz =
∫

C

f(z)
z − z0

dz = 2πif(z0).

Thus, the Cauchy integral formula is a special case of the residue theorem.
Next, suppose f(z) has a pole of order k at z = z0. To find the residue

a−1 in terms of f(z), by Laurent’s series, we write

(z − z0)kf(z) = a−k + a−k+1(z − z0) + · · · (9.14)
+a−1(z − z0)k−1 + g(z)(z − z0)k,

where g(z) is analytic at z = z0. Differentiating (9.14) k − 1 times and evalu-
ating at z = z0, we get the following result.

Theorem 9.25. (Residue at a pole of order k) If f(z) has a pole of order
k at z = z0, then

Res [f(z); z0] =
1

(k − 1)!
lim

z→z0

dk−1

dzk−1
(z − z0)kf(z). (9.15)

In particular, if f has a simple pole at z0, then

Res [f(z); z0] = lim
z→z0

(z − z0)f(z).

The following special case is particularly useful.

Theorem 9.26. (Residue at a simple pole) Let f(z) and g(z) be analytic
at z0. If g(z) has a simple pole at z0 and f(z0) �= 0. Then, we have

Res
[
f(z)
g(z)

; z0

]
=

f(z0)
g′(z0)

and Res
[

1
g(z)

; z0

]
=

1
g′(z0)

.

Proof. By hypothesis f(z)/g(z) has a simple pole at z0. Consequently (as
g(z0) = 0 and g′(z0) �= 0), by Theorem 9.25

Res
[
f(z)
g(z)

; z0

]
= lim

z→z0

(
z − z0

g(z) − g(z0)

)
f(z) =

f(z0)
g′(z0)

.

To illustrate the use of (9.15), we provide a couple of more examples.

Examples 9.27. (i) To evaluate I =
∫
|z|=1

|z−a|−4 |dz| for a > 1, we may
first rewrite
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|dz|
|z − a|4 =

dθ

(z − a)2(z − a)2
(z = eiθ ⇒ |dz| = |iz dθ| = d θ)

=
1

(z − a)2(1/z − a)2
dz

iz

=
z2

(z − a)2(1 − az)2
dz

iz

=
z/(z − a)2

ia2(z − 1/a)2
dz,

and therefore, since a > 1,

I =
1

ia2

∫
|z|=1

z/(z − a)2

(z − 1/a)2
dz

=
1

ia2

[
2πi

d

dz

(
z

(z − a)2

)∣∣∣∣
z=1/a

]

= 2π

(
a2 + 1

(a2 − 1)3

)
.

(ii) If f(z) = (z2 + a2)−n for some a > 0 and n ∈ N, then the singularities
of f(z) are given by

z2 + a2 = 0, i.e., z = ±ia.

Clearly, z = ±ia are poles of order n for f(z). If n = 1, then

Res[f(z); ia] =
1

2ia
.

For n > 1, the residue is given by

Res [f(z); ia] =
1

(n − 1)!
lim

z→ia

dn−1

dzn−1
((z − ia)nf(z))

=
1

(n − 1)!
lim

z→ia

dn−1

dzn−1

(
1

(z + ia)n

)

=
1

(n − 1)!
lim

z→ia

[−n(−n − 1) · · · (−n − (n − 2))
(z + ia)n+n−1

]

=
1

(n − 1)!

[
(−1)n−1n(n + 1) · · · (2n − 2)

(2ia)n+n−1

]

=
(2n − 2)!

((n − 1)!)2
i2n−2−(2n−1)

(2a)2n−1

= − (2n − 2)!
((n − 1)!)2(2a)2n−1

. •
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Suppose that z = ∞ is an isolated singularity of f(z). Then f(z) is analytic
in a deleted neighborhood of z = ∞ and so, by Laurent’s theorem, we may
write

f(z) =
∞∑

n=−∞
anzn (δ < |z| < ∞),

for some δ > 0. Choose R > δ and let γ be the circle of radius R centered at
0, which is traversed in the clockwise direction, so that the point at infinity is
to the left as in the case of finite isolated singularity. Note that

∫
γ

zn dz = 0
for n �= −1 and

∫
γ

z−1 dz = −2πi. Thus, because of the uniform convergence
on |z| = R, we have

1
2πi

∫
γ

f(z) dz =
1

2πi

∞∑
n=−∞

an

∫
γ

zn dz = −a−1.

Therefore, we define the residue of f(z) at z = ∞ as

Res [f(z);∞] =
1

2πi

∫
γ

f(z) dz = − 1
2πi

∫
|z|=R

f(z) dz = −a−1

where R > δ. Also, as f(z) =
∑∞

n=−∞ anzn is analytic for |z| > R iff f(1/z) =∑∞
n=−∞ anz−n is analytic for 0 < |z| < 1/R, we have

a−1 = coefficient of 1/z in
1
z2

f

(
1
z

)
=

∞∑
n=−∞

an

zn+2
, 0 < |z| < 1/R,

= Res
[

1
z2

f

(
1
z

)
; 0

]

and hence,

Res [f(z);∞] = −Res
[

1
z2

f

(
1
z

)
; 0

]
.

For instance, if f(z) = 1 − 1/z for 0 < |z| < ∞, then

g(z) = f(1/z) = 1 − z and (1/z2)f(1/z) = z−2 − z−1,

showing that g(z) has a removable singularity at the origin. In other words,
f(z) has a removable singularity at the point at infinity, and Res [f(z);∞] = 1.
Note also that z = 0 is the only singularity of f(z) in C and is a simple pole
with Res [f(z); 0] = −1. Thus,

Res [f(z); 0] + Res [f(z);∞] = 0

which is a demonstration for the following result.
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Theorem 9.28. (Residue Theorem for C∞) Suppose f(z) is analytic in C∞
except for isolated singularities at z1, z2, z3, . . . , zn,∞. Then the sum of its
residues (including the point at infinity) is zero. That is,

Res [f(z);∞] +
n∑

k=1

Res [f(z); zk] = 0.

Proof. Choose R large enough so that all the isolated singularities in C are in
|z| < R. Then, by Theorem 9.24,

1
2πi

∫
|z|=R

f(z) dz =
n∑

k=1

Res [f(z); zk].

But the integral on the left is −Res [f(z);∞], and the result follows.

Example 9.29. Consider the evaluation of the integral

I =
1

2πi

∫
|z|=2

f(z) dz, f(z) =
1

(z − 3)(zn − 1)
(n ∈ N).

By Residue theorem, I =
∑n

k=1 Res [f(z); zk] where zk’s are nothing but the
nth roots of unity. However, by the residue theorem for the extended complex
plane, we must have

n∑
k=1

Res [f(z); zk] = −{Res [f(z); 3] + Res [f(z);∞]}.

We note that Res [f(z); 3] = limz→3(z − 3)f(z) = (3n − 1)−1 and

Res [f(z);∞] = −Res
[

1
z2

f

(
1
z

)
; 0

]
= −Res

[
zn−1

(1 − 3z)(1 − zn)
; 0

]
= 0.

Hence, I = −1/(3n − 1). •
Example 9.30. We illustrate Theorem 9.28 by finding residues at all singu-
larities of

f(z) =
zne1/z

1 + z
, n ∈ N.

This function has a simple pole at z = −1 and has an essential singularity at
z = 0. Therefore, Res [f(z);−1] = (−1)n/e. If we let w = z−1 we obtain

f(z) = f(1/w) =
ew

wn−1(1 + w)
, 0 < |w| < 1. (9.16)

This implies that z = ∞ is a pole of order n − 1 for f(z). Since z = 0 is an
essential singularity of f(z), we must rely on our ability to find the Laurent
series expansion of f(z) around zero. Thus we form
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f(z) =

( ∞∑
k=0

(−1)kzn+k

)( ∞∑
m=0

z−m

m!

)
, 0 < |z| < 1.

Collecting the terms involving 1/z (use Cauchy product of two convergent
series), we have

Res [f(z); 0] = a−1 =
∞∑

k=1

(−1)k−1

(n + k)!
.

Next we determine the residue at z = ∞. For this, using (9.16), we write

F (w) =
f(1/w)

w2

=
ew

wn+1(1 + w)

= w−n−1

[ ∞∑
k=0

(−1)kwk

][ ∞∑
m=0

wm

m!

]
, 0 < |w| < 1.

Again collecting the terms involving 1/w (again use Cauchy product of two
convergent series), we have

Res [F (w); 0] =
(−1)n

0!
+

(−1)n−1

1!
+ · · · +

(−1)0

n!
=

n∑
k=0

(−1)n−k

k!
.

Therefore, by the definition of the residue at ∞, we find that

Res [f(z);∞] = −Res [F (w); 0] = −
n∑

k=0

(−1)n−k

k!
.

We see that Res [f(z); 0] + Res [f(z);−1] + Res [f(z);∞] = 0. •
Armed with several ways to determine residues, we turn now to an impor-

tant application, that of evaluating a real integral by integrating a complex
function along a simple closed contour. The usual method involves a complex
function that is real on the real axis. Then a real interval is one of the smooth
curves that make up the contour along which we integrate. Recall that the
improper integral

∫∞
a

f(x) dx is defined to be limR→∞
∫ R

a
f(x) dx if this limit

exists.

Example 9.31. We wish to use contour integration to show that∫ ∞

−∞

dx

x2 + 1
= π.

The complex function f(z) = 1/(z2 + 1) has singularities at z = ±i. Let C be
the contour consisting of the real axis from −R to R (R > 1) followed by the
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Figure 9.4.

semicircle in the upper half-plane (see Figure 9.4). Then the only singularity
of f(z) inside C is at z = i, and its residue is

lim
z→i

(z − i)f(z) =
1
2i

.

Hence ∫
C

dz

z2 + 1
= 2πi

1
2i

= π (9.17)

and the value of this integral is independent of R, R > 1. Also,∫
C

dz

z2 + 1
=

∫ R

−R

dx

x2 + 1
+

∫ π

0

iReiθ

R2e2iθ + 1
dθ. (9.18)

Observe that ∣∣∣∣
∫ π

0

iReiθ

R2e2iθ + 1
dθ

∣∣∣∣ ≤
∫ π

0

R

R2 − 1
dθ =

πR

R2 − 1
. (9.19)

In view of (9.19), the second integral on the right of (9.18) approaches 0 as
R → ∞. Thus

lim
R→∞

∫
C

dz

z2 + 1
=

∫ ∞

−∞

dx

x2 + 1
,

and the result follows from (9.17). •
In evaluating a real integral by contour integration, an appropriate com-

plex function and an appropriate contour must be chosen. In Example 9.31,
the choice of the complex function was easy. That this is not always the case
will be seen shortly. The reader should verify that the desired result in Ex-
ample 9.31 could also have been obtained using the contour consisting of the
real axis from −R to R followed by the semicircle in the lower half-plane. The
technique of Example 9.31 can be adopted to evaluate integrals of the form

I =
∫ ∞

−∞

p(x)
q(x)

dx,

where p(x) and q(x) are polynomials such that
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(i) q(x) �= 0 for x ∈ R

(ii) p(x) and q(x) have real coefficients
(iii) deg q(x) ≥ deg p(x) + 2.

In view of these assumptions, if we proceed exactly as in Example 9.31, it
follows that the integral over the semicircular contour

ΓR = {z = Reiθ : 0 ≤ θ ≤ π}

in the upper half-plane approaches zero as R → ∞. Consequently, the value
of the integral I is 2πi times the sum of the residues evaluated at those
singularities which lie in the upper half-plane.

The same contour may be used to evaluate integrals of the form∫ ∞

−∞

p(x)
q(x)

cos(ax) dx and
∫ ∞

−∞

p(x)
q(x)

sin(ax) dx (a > 0),

where p and q are as above. One may weaken the condition (iii) described
above by replacing it by

deg q(x) ≥ deg p(x) + 1,

with a slightly different argument (as we shall see in some examples below).
The integrals of this form are encountered in applications of Fourier analysis,
and so they are often referred to as a special case of Fourier integrals.

Clearly, to use the semicircular contour, we cannot start with

f(z) =
p(z)
q(z)

cos(az) or
p(z)
q(z)

sin(az) (a > 0)

because both cos z and sin z grow faster than polynomials along the imaginary
axis. The trick is to start with

f(z) =
p(z)
q(z)

eiaz

and recover the cosine and sine integrals at the end by taking real and imag-
inary parts, respectively. Note that for Im z ≥ 0 and a > 0,

|eiaz| = |eia(x+iy)| = e−ay ≤ e0 = 1,

so that eiaz is bounded by 1 for all z in the upper half-plane {z : Im z ≥ 0}.
Note that for a < 0, eiaz is bounded on the lower half-plane {z : Im z ≤ 0}
but not on the upper half-plane. In this situation either one has to choose the
lower half-plane or start with

p(z)
q(z)

e−iaz.

As another example, we next show that
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−∞

cos(ax)
x2 + m2

dx =
πe−a

m
for a, m > 0.

Consider f(z) = eiaz/(z2 +m2) and C is same contour as above, namely, C is
the boundary of the semi-disk in the upper half-plane bounded by the interval
[−R, R] on the real axis and the semicircular contour ΓR of radius R (large
enough to enclose im inside C) in the upper half-plane. Note that f(z) has
only one simple pole inside C at z = im with

Res [f(z); im] = lim
z→im

(z − im)
eiaz

z2 + m2
=

eia(im)

2im
=

e−a

2im
.

As usual,

∫
C

f(z) dz =
∫ R

−R

f(x) dx +
∫

ΓR

f(z) dz = 2πi

(
e−a

2im

)
=

πe−a

m
. (9.20)

As |eiaz| = e−ay ≤ e0 = 1 for Im z = y ≥ 0, the ML-estimate yields∣∣∣∣
∫

ΓR

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

ΓR

eiaz

z2 + m2
dz

∣∣∣∣ ≤ πR

R2 − m2
→ 0 as R → ∞.

Consequently, passing to the limit R → ∞ in (9.20) shows that∫ ∞

−∞

eiax

x2 + m2
dx =

πe−a

m
.

Equating real parts, we have∫ ∞

−∞

cos ax

x2 + m2
dx =

πe−a

m
, i.e.,

∫ ∞

0

cos ax

x2 + m2
dx =

πe−a

2m
.

Note also that if we take the imaginary part of the integral, we get∫ ∞

−∞

sin ax

x2 + m2
dx = 0 (a, m > 0).

For our next example, we need the following result.

Lemma 9.32. If 0 < θ ≤ π/2, then sin θ ≥ (2/π)θ.

Proof. Geometrically, the result is clear because the graph of sin θ lies above
the line segment connecting (0, 0) and (π/2, 1).

Alternatively, if we set f(θ) = (sin θ)/θ then, as f(π/2) = 2/π, it suffices
to show that f(θ) is a decreasing function in the interval [0, π/2], where we
define f(0) = limθ→0 f(θ) = 1. An application of the mean-value theorem
yields
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f ′(θ) =
θ cos θ − sin θ

θ2
=

cos θ − (sin θ)/θ

θ

=
cos θ − cos ξ

θ
(0 < ξ < θ).

Since the cosine is a decreasing function in the interval [0, π/2], f ′(θ) < 0 and
the result follows.

Example 9.33. We wish to show that∫ ∞

0

sin x

x
dx =

π

2
.

Our first inclination is to integrate (sin z)/z along the same contour as in the
previous example. This does not work for two reasons. First, (sin z)/z has a
singularity at z = 0 and we can not usually integrate along a path that passes
through a singularity point. But the singularity is removable; so this difficulty
can be overcome. Second, and more important as was indicated earlier, the
integral of (sin z)/z along the semicircle does not approach a finite limit as
the radius tends to infinity, because for z = iR one sees that

lim
R→∞

sin(iR)
iR

= lim
R→∞

e−R − eR

2i2R
→ ∞ as R → ∞.

We will consider the function eiz/z, whose imaginary part on the real
axis is (sin x)/x. Our contour C will consist of the real axis from ε to R, the
semicircle in the upper half-plane from R to −R, the real axis from −R to
−ε, and the semicircle in the upper half-plane from −ε to ε (see Figure 9.5).
The function eiz/z is analytic inside and on C, so that

0 =
∫

C

eiz

z
dz

=
∫ R

ε

eix

x
dx +

∫ π

0

eiReiθ

Reiθ
iReiθ dθ +

∫ −ε

−R

eix

x
dx +

∫ 0

π

eiεeiθ

εeiθ
iεeiθ dθ

=
∫ R

ε

eix − e−ix

x
dx + i

∫ π

0

eiReiθ

dθ − i

∫ π

0

eiεeiθ

dθ

0

Figure 9.5.
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where we have replaced x by −x in the third integral and combined with the
first integral. Since eix − e−ix = 2i sinx, the last equation may be rewritten
as

0 = 2i
∫ R

ε

sinx

x
dx + i

∫ π

0

eiReiθ

dθ − i

∫ π

0

eiεeiθ

dθ. (9.21)

We now examine the behavior of the second integral on the left side of (9.21).
From the identity sin(π − θ) = sin θ and the lemma, it follows that

∣∣∣∣i
∫ π

0

eiReiθ

dθ

∣∣∣∣ ≤
∫ π

0

e−R sin θ dθ = 2
∫ π/2

0

e−R sin θ dθ

≤ 2
∫ π/2

0

e−(2R/π)θ dθ

=
π

R
(1 − e−R),

which tends to 0 as R approaches ∞. Hence letting R → ∞ in (9.21) leads to

2
∫ ∞

ε

sin x

x
dx =

∫ π

0

eiεeiθ

dθ. (9.22)

For 0 < ε < 1/2, we expand eiεeiθ

in a power series to show that

|eiεeiθ − 1| < 2ε

for all θ, 0 < θ ≤ π. We see that∫ π

0

eiεeiθ

dθ =
∫ π

0

(eiεeiθ − 1) dθ +
∫ π

0

dθ → π as ε → 0.

Thus, letting ε → 0 in (9.22), it follows that

2
∫ ∞

0

sin x

x
dx = π

and the result follows. The reader should verify that the contour in Figure 9.6
could also have been used to prove the desired result. •

Let us demonstrate the method by evaluating another integral

I =
∫ ∞

0

x sin(ax)
x2 + m2

dx (a, m > 0).

Note that the limits of integration in the given integral are not from −∞ to
∞ as required by the method described above. On the other hand, since the
integrand is an even function of x,
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0

Figure 9.6.

I =
1
2

∫ ∞

−∞

x sin(ax)
x2 + m2

dx.

Now, we let C be the contour as in Example 9.31 and consider

f(z) =
zeiaz

z2 + m2
.

Then f(z) has only one simple pole inside C at z = im with

Res [f(z); im] = lim
z→im

(z − im)f(z) = lim
z→im

zeiaz

z + im
=

e−am

2
.

Thus, for R large enough,∫
C

f(z) dz =
∫ R

−R

f(x) dx +
∫

ΓR

f(z) dz = 2πi

(
e−am

2

)
, (9.23)

where ΓR denotes the semicircular contour in the upper half-plane from −R
to R. Now, for large R∣∣∣∣

∫
ΓR

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫ π

0

Reiθ

R2e2iθ + m2
eia(R cos θ+iR sin θ)iReiθ dθ

∣∣∣∣
≤ R2

R2 − m2

∫ π

0

e−aR sin θ dθ

≤ R2

R2 − m2

[ π

aR
(1 − e−aR)

]
which tends to zero as R approaches ∞. Passing to the limit R → ∞ in (9.23)
leads to ∫ ∞

−∞

xeiax

x2 + m2
dx = πie−am.

Equating the imaginary part gives∫ ∞

−∞

x sin(ax)
x2 + m2

dx = πe−am
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and so, I = πe−am/2.
The next integral is found by methods from calculus. It will be used in

conjunction with contour integration to evaluate a different real integral.

Lemma 9.34.
∫ ∞

0

e−x2
dx =

√
π/2.

Proof. Set I =
∫ R

0
e−x2

dx. Then

I2 =

(∫ R

0

e−x2
dx

)(∫ R

0

e−y2
dy

)
=

∫ R

0

∫ R

0

e−(x2+y2) dxdy.

Here we are integrating along a square S in the first quadrant whose sides
have length R. Let C1 and C2 be the quarter circles in the first quadrant
centered at the origin having radii R and R

√
2, respectively (see Figure 9.7).

Evaluating along the circles in polar coordinates, we have

∫ π/2

0

∫ R

0

e−r2
r dr dθ <

∫ R

0

∫ R

0

e−(x2+y2) dxdy <

∫ π/2

0

∫ R
√

2

0

e−r2
r dr dθ,

or
π

4
(1 − e−R2

) <

(∫ R

0

e−x2
dx

)2

<
π

4
(1 − e−2R2

).

Letting R → ∞, we see that

(∫ ∞

0

e−x2
dx

)2

=
π

4
,

and the result follows.

Figure 9.7.
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Figure 9.8.

Example 9.35. We wish to show that∫ ∞

0

sin x2 dx =
∫ ∞

0

cos x2 dx =
1
2

√
π/2.

Note that it is not at all obvious that these integrals even converge.
Let C be the contour consisting of the line segment from 0 to R followed

by the arc from R to Reπi/4 and the line segment from Reπi/4 to 0 (see
Figure 9.8). Since eiz2

is analytic everywhere in C, by Cauchy’s theorem, we
have

0 =
∫

C

eiz2
dz

=
∫ R

0

eix2
dx +

∫ π/4

0

eiR2e2iθ

iReiθ dθ −
∫ R

0

ei(teπi/4)2eπi/4 dt.

Thus,

∫ R

0

eix2
dx +

∫ π/4

0

eiR2e2iθ

iReiθ dθ = eπi/4

∫ R

0

e−t2 dt. (9.24)

We now show that the second integral on the left side of (9.24) tends to 0 as
R approaches ∞. Note that∣∣∣∣∣

∫ π/4

0

eiR2e2iθ

iReiθ dθ

∣∣∣∣∣ ≤ R

∫ π/4

0

e−R2 sin 2θ dθ

=
R

2

∫ π/2

0

e−R2 sin θ dθ

≤ R

2

[
π(1 − e−R2

)
2R2

]

→ 0 as R → ∞.

In view of this, we let R → ∞ in (9.24) to obtain
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0

eix2
dx = eπi/4

∫ ∞

0

e−t2 dt.

Applying Lemma 9.34, we get∫ ∞

0

cos x2 dx + i

∫ ∞

0

sinx2 dx = eπi/4

√
π

2
=

1
2

√
π

2
+

i

2

√
π

2
.

The result now follows upon equating real and imaginary parts. •
Our next example involves integrals of trigonometric functions. If z tra-

verses the unit circle |z| = 1, then we may parameterize z by

z = eiθ (0 ≤ θ ≤ 2π).

The identities

sin θ =
eiθ − e−iθ

2i
=

z − 1/z

2i
, and cos θ =

eiθ + e−iθ

2
=

z + 1/z

2

enable us to evaluate certain integrals of the form∫ 2π

0

g(sin θ, cos θ) dθ

by the residue theorem in the normal way.
To illustrate this, we let a and b real, |a| > |b|, and show that

I =
∫ 2π

0

dθ

a + b cos θ
=

2π√
a2 − b2

. (9.25)

The idea is to convert this into a contour integral around the unit circle. First,
we observe that there is nothing to prove if b = 0. For b �= 0, we may rewrite
I as

I =
1
b

∫ 2π

0

dθ

a/b + cos θ
=

1
b

∫ 2π

0

dθ

α + cos θ

where α = a/b ∈ R with |α| > 1. Thus, it suffices to deal with the case b = 1;
i.e., to evaluate

J =
∫ 2π

0

dθ

α + cos θ
, for α real with |α| > 1.

Now, setting z = eiθ, we see that dz = ieiθ dθ = iz dθ. Thus∫ 2π

0

dθ

α + cos θ
=

∫
C

1
α + (1/2)(z + 1/z)

dz

iz
=

2
i

∫
C

f(z) dz, (9.26)

where C is the unit circle |z| = 1 and



9.3 Evaluation of Real Integrals 325

f(z) =
1

z2 + 2αz + 1
.

Note that f(z) has simple poles at

z1 = −α +
√

α2 − 1 and z2 = −α −
√

α2 − 1.

Note that z1 lies inside C if α > 1 and lies outside C if α < −1. A similar
observation implies that z2 lies inside C if α < −1 and lies outside if α > 1.
Now,

Res [f(z); z1] = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

(z − z1)(z − z2)
=

1
z1 − z2

and
Res [f(z); z2] = − 1

z1 − z2
.

Hence, applying the residue theorem for the last integral in (9.26), we get

∫ 2π

0

dθ

α + cos θ
=

⎧⎪⎪⎨
⎪⎪⎩

2πi

i
√

α2 − 1
if α > 1

− 2πi

i
√

α2 − 1
if α < −1

=

⎧⎪⎨
⎪⎩

2π√
α2 − 1

if α > 1

−2π√
α2 − 1

if α < −1

and hence (9.25) follows. As a consequence, we can easily obtain the following:

(i) I =
∫ π

0

dθ

a2 + cos2 θ
=

∫ π

0

dθ

a2 + sin2 θ
=

π

a
√

1 + a2
for a > 0. To do

this, we first recall that

2 cos2 θ = 1 + cos 2θ and 2 sin2 θ = 1 − cos 2θ,

and so ∫ π

0

dθ

a2 + cos2 θ
=

∫ π

0

2dθ

2a2 + 1 + cos 2θ
=

∫ 2π

0

dφ

α + cos φ
,

where α = 2a2 + 1 > 1. Similarly, we have∫ π

0

dθ

a2 + sin2 θ
=

∫ π

0

2dθ

2a2 + 1 − cos 2θ
= −

∫ 2π

0

dφ

cos φ − α
.

The desired conclusion follows from (9.25).
(ii) We can also apply (9.25) to show that

I =
∫ 2π

0

1 + 2 cos θ

5 + 4 cos θ
dθ = 0.

To do this, we note that
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I =
1
2

∫ 2π

0

5 − 3 + 4 cos θ

5 + 4 cos θ
dθ

=
1
2

[∫ 2π

0

dθ − 3
∫ 2π

0

dθ

5 + 4 cos θ

]

=
1
2

[
2π − 3

(
2π√

25 − 16

)]
= 0.

Let us present another important example of this type. Consider

I =
∫ 2π

0

cos nθ

cos θ + α
dθ, for α > 1 and n ∈ N0.

We may rewrite the integral as

I = Re
[∫ 2π

0

einθ

cos θ + α
dθ

]
= Re [J ].

The substitution z = eiθ gives

J =
∫
|z|=1

zn(
z2+1
2z

)
+ α

dz

iz
=

2
i

∫
|z|=1

f(z) dz,

where
f(z) =

zn

z2 + 2αz + 1
=

zn

(z − z1)(z − z2)

with
z1 = −α +

√
α2 − 1 and z2 = −α −

√
α2 − 1.

Since z1z2 = 1 and α > 1, we have |z1| < 1 and |z2| > 1. It follows that the
only singularity of f(z) inside the unit circle |z| = 1 is z = z1, which is a
simple pole with

Res [f(z); z1] = lim
z→z1

(z − z1)f(z) = lim
z→z1

zn

z − z2
=

zn
1

z1 − z2
=

zn
1

2
√

α2 − 1
.

Therefore,

J =
2
i
(2πiRes [f(z); z1]) = 2π

(
(
√

α2 − 1 − α)n

√
α2 − 1

)
for α > 1.

Consequently (note that ImJ = 0), I = J .
For instance, for n = 1 and α = 2, one has∫ 2π

0

cos θ

cos θ + 2
dθ = 2π

(
1 − 2√

3

)
.
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Similarly, for n = 0 and α = 5/4, one has∫ 2π

0

dθ

4 cos θ + 5
=

1
4

∫ 2π

0

dθ

cos θ + 5/4
=

2π

3
.

The change of variable θ = π/2 + φ helps to compute

∫ 2π

0

dθ

sin θ + α
=

∫ π/2+2π

π/2

dφ

cos φ + α
=

∫ 2π

0

dφ

cos φ + α
for α > 1.

Using the same idea one can compute the integral∫ 2π

0

cos nθ

(cos θ + α)2
dθ for α > 1.

Let us now evaluate

I =
∫ 2π

0

cos nθ

1 − 2α cos θ + α2
dθ for −1 < α �= 0 < 1, n ∈ N0.

As before

I = Re
[∫ 2π

0

einθ

1 − 2α cos θ + α2
dθ

]
= Re

∫ 2π

0

einθ

(eiθ − α)(e−iθ − α)
dθ = Re J.

The usual parameterization z = eiθ for J gives

J =
∫
|z|=1

zn

(z − α)(1/z − α)
dz

iz
=

1
i

∫
|z|=1

f(z) dz,

where
f(z) =

zn

(z − α)(1 − zα)

and f has two simple poles at z = α and z = 1/α. As −1 < α �= 0 < 1, only
z = α lies inside the unit circle with

Res [f(z);α] = lim
z→α

zn

1 − αz
=

αn

1 − α2
.

Then by the residue theorem

J =
1
i
(2πiRes [f(z);α]) =

2παn

1 − α2
.

Again note that ImJ = 0. Consequently,

I =
2παn

1 − α2
for α ∈ (−1, 1) \{0} and n ∈ N0.

In particular, for n = 0, I gives
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1
2π

∫ 2π

0

1 − α2

1 − 2α cos θ + α2
dθ = 1 for − 1 < α < 1.

Note that the integrand is the Poisson kernel (see Corollary 10.20). Also, we
observe that one can also obtain the value of I for α ∈ R with |α| > 1. Finally,
we show that

I =
∫ 2π

0

sin2 θ

a + b cos θ
dθ =

2π

b2
(a −

√
a2 − b2) (a, b ∈ R, |a| > |b| > 0).

To do this, we rewrite

I =
1
b

∫ 2π

0

sin2 θ

α + cos θ
dθ =

1
b
J (|α| = |a/b| > 1, α ∈ R)

where

J =
∫
|z|=1

(
z − 1/z

2i

)2 1
α + (z + 1/z) 1

2

dz

iz

= − 1
2i

∫
|z|=1

f(z) dz, f(z) =
(z2 − 1)2

z2(z2 + 2αz + 1)
.

Note that f has a double pole at z = 0 and simple poles at

z1 = −α +
√

α2 − 1 and z2 = −α −
√

α2 − 1 =
1
z1

.

The only singularities which lie inside the unit circle |z| = 1 are at z = 0 and
at z = z1. Now

Res [f(z); 0] = coefficient of z in (z4 − 2z2 + 1)(z2 + 2αz + 1)−1

= coefficient of z in (z4 − 2z2 + 1)(1 − (2αz + z2) + · · · )
= −2α

and

Res [f(z); z1] = lim
z→z1

(z2 − 1)2

z2(z − z2)
=

(z2
1 − 1)2

z2
1(z1 − z2)

= (z1 − 1/z1)2
1

z1 − z2

=
(z1 − z2)2

z1 − z2

= z1 − z2

= 2
√

α2 − 1

so that J = −(1/2i)[2πi(−2α + 2
√

α2 − 1)] = 2π(α −
√

α2 − 1).
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Questions 9.36.

1. If f has a removable singularity at ∞, is Res [f(z),∞] = 0?
2. If Res [f(z),∞] = 0, does f have a removable singularity at z = ∞?
3. Since

∫
C

sin(1/z2) dz = 0 along any simple closed contour containing
the origin, why is sin(1/z2) not analytic?

4. Is the residue theorem valid for non-isolated singularities?
5. For what kinds of functions will we be able to evaluate complex integrals

by means of the residue theorem but not Cauchy’s integral formula?
6. In evaluating real integrals by contour integration, what general criteria

do we have for choosing the proper complex function and the proper
contour?

7. Why does the residue theorem not hold for multiple-valued functions?
8. Why is it easier to evaluate integrals of the form∫ ∞

−∞

1
1 + x2n

dx

than integrals of the form∫ ∞

−∞

1
1 + x2n+1

dx?

Exercises 9.37.

1. Determine the residue at each singularity for the following functions.

(a)
1

cos z
(b)

z

(z − 1)2(z − 2)
(c) zn cos

1
z

2. Show that
∫
|z|=R

|(sin z)/z| |dz| → ∞ as R → ∞.

3. Let f be analytic on an open set D, and f ′(a) �= 0 for some a ∈ D.
Show that ∫

C

dz

f(z) − f(a)
=

2πi

f ′(a)

where C is a sufficiently small circle centered at a.
4. Evaluate the following integrals along different simple closed curves not

passing through 0 and ±1.

(i)
∫

C

ez − 1
z2(z − 1)

dz (ii)
∫

C

ez

z2(1 − z2)
dz.

5. Evaluate the following integrals.

(a)
∫
|z|=1/2

sin z

1 + z + z2 + · · · + zn
dz, where n is the integer nearest

your age

(b)
∫
|z|=5/2

ez2
π cot πz dz.
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6. For φ ∈ (0, π) and n ∈ N, show that

1
2πi

∫
|z|=2

zn

1 − 2z cos φ + z2
dz =

sinnφ

sinφ
.

7. For each integer n, evaluate

(a)
∫
|z|=n

tanπz dz (b)
∫
|z|=n+1/2

cot πz dz.

8. Evaluate

(i)
∫
|z|=1

ez

z(2z + 1)2
dz (ii)

∫
|z|=2

(2z − 1)ez/(z−1) dz.

9. Let f(z) = z4 + 6z2 + 13. Find the residue of z2/f(z) at the zeros of
f(z) = 0 which lie in the upper half-plane {w ∈ C : Re w > 0}.

10. Using the concept of the residue at the point at infinity, deduce the
fundamental theorem of algebra.

11. Use contour integration to evaluate

(a)
∫ ∞

0

dx

1 + x6
(b)

∫ ∞

0

x2

1 + x4
dx

(c)
∫ ∞

−∞

dx

1 + x + x2
(d)

∫ ∞

−∞

x

(x2 + 2x + 2)2
dx

(e)
∫ ∞

−∞

cos ax

1 + x + x2
dx (f)

∫ ∞

0

x2 + 1
x4 + 1

dx

(g)
∫ ∞

0

x2

(x2 + 4)2(x2 + 9)
dx (h)

∫ ∞

0

x2

(x2 + 1)(x2 + 4)
dx.

12. Let C be the rectangle having vertices at 0, R, R+ic, ic. By considering
the integral

∫
C

e−z2
dz, evaluate∫ ∞

0

e−x2
cos(2cx) dx.

13. (a) By integrating (eiz−1)/z along the contour of Figure 9.4, show that∫ ∞

0

sinx

x
dx =

π

2
.

(b) By integrating (e2iz − 1)/z2 along the contour of Figure 9.5, show
that ∫ ∞

0

sin2 x

x2
dx =

π

2
.

(c) By integrating (1 + 2iz − eiz)/z2 along the contour of Figure 9.4,
show that ∫ ∞

0

sin2 x

x2
dx =

π

2
.
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14. If t �= ±1 is real, show that∫ 2π

0

dθ

1 − 2t cos θ + t2
=

2π

|t2 − 1| .

15. Show that

(a)
∫ 2π

0

cos θ

5 + 4 cos θ
dθ = −π

3
(b)

∫ π/2

0

dθ

1 + sin2 θ
=

π

2
√

2

(c)
∫ 2π

0

dθ

a2 sin2 θ + b2 cos2 θ
=

2π

ab
(a, b > 0).

9.4 Argument Principle

Suppose f(z) is a nonconstant function analytic at z0 with f(z0) = 0. Then,
by Corollary 8.45, there exists a neighborhood of z0 that contains no other
zeros of f(z). Thus we may express f(z) as

f(z) = (z − z0)kF (z) (k a positive integer),

where F (z) is analytic at z0 with F (z0) �= 0. Thus, F (z) �= 0 in the neighbor-
hood of z0 or on its boundary C. Note that

f ′(z) = (z − z0)k−1[kF (z) + (z − z0)F ′(z)],

has a zero of order k − 1 at z0 and

f ′(z)
f(z)

=
k

z − z0
+

F ′(z)
F (z)

(9.27)

so that, at each zero of f of order k, f ′(z)/f(z) has a simple pole with residue
k. Thus, the residue theorem gives

1
2πi

∫
C

f ′(z)
f(z)

dz = k,

the order of the zero of f(z). The expression f ′(z)/f(z) is called the loga-
rithmic derivative of f(z) because it is the derivative of log f(z) at all points
where f(z) is analytic and nonzero.

Next suppose that f(z) is analytic inside and on a simple closed contour
C with no zeros on C. By Theorem 8.47, f(z) has at most a finite number of
zeros inside C. Let the zeros be at z1, z2, . . . , zn with orders α1, α2, . . . , αn,
respectively. Then

f(z) = (z − z1)α1(z − z2)α2 · · · (z − zn)αnF (z), (9.28)

where F (z) has no zeros inside or on C. Forming the logarithmic derivative
in (9.28), we obtain
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f ′(z)
f(z)

=
n∑

j=1

αj

z − zj
+

F ′(z)
F (z)

. (9.29)

An integration of (9.29) leads to

1
2πi

∫
C

f ′(z)
f(z)

dz =
1

2πi

∫
C

⎛
⎝ n∑

j=1

αj

z − zj

⎞
⎠ dz +

1
2πi

∫
C

F ′(z)
F (z)

dz (9.30)

=
n∑

j=1

αj

(
1

2πi

∫
C

dz

z − zj

)
.

For each point zj inside C, construct a circle Cj contained in C having center
at zj and containing no other zero of f(z) (see Figure 9.9). Then for each zj ,

1
2πi

∮
C

dz

z − zj
=

1
2πi

∮
Cj

dz

z − zj
= 1. (9.31)

An application of (9.31) to (9.30), or a direct application of the residue theo-
rem to (9.29) yields

1
2πi

∫
C

f ′(z)
f(z)

dz =
n∑

j=1

αj . (9.32)

Thus, we have

Theorem 9.38. If f is analytic inside and on a simple closed contour C with
no zeros on C, then

1
2πi

∫
C

f ′(z)
f(z)

dz = N

where N is the number of zeros of f(z) inside C. In determining N , zeros are
counted according to their order or multiplicities.

Figure 9.9.
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Thus the expression
1

2πi

∫
C

f ′(z)
f(z)

dz

may be viewed as a “counting function” for the zeros of f(z) inside C, where
a zero of multiplicity k is counted k times.

In Section 9.2 we have shown that a function f(z) having a pole of order
n at z0 may be expressed as

f(z) =
F (z)

(z − z0)n
,

where F (z) is analytic at z = z0 with F (z0) �= 0. As can be seen in (9.27), if
f(z) has a zero at z0, then f ′(z)/f(z) has a simple pole at z0.

Equation (9.32) may now be generalized in the following manner:

Theorem 9.39. (Argument Principle) Let f(z) be analytic inside and on
a simple closed contour C except for a finite number of poles inside C, and
suppose f(z) �= 0 on C. If Nf and Pf are, respectively, the number of zeros
(a zero of order k being counted k times) and poles (again with multiplicity)
inside C, then

1
2πi

∫
C

f ′(z)
f(z)

dz = Nf − Pf .

Proof. Suppose the zeros of f(z) are z1, · · · , zn with multiplicity α1, . . . , αn

and the poles of f(z) are w1, . . . , wm with multiplicity β1, . . . , βm. Then f(z)
may be written as

f(z) =
(z − z1)α1 · · · (z − zn)αn

(z − w1)β1 · · · (z − wm)βm
F (z),

where F (z) is analytic with no zeros or poles inside or on C. Forming the
logarithmic derivative, we have

f ′(z)
f(z)

=
n∑

j=1

αj

z − zj
−

m∑
j=1

βj

z − wj
+

F ′(z)
F (z)

. (9.33)

Integrating (9.33), we obtain

1
2πi

∫
C

f ′(z)
f(z)

dz =
n∑

j=1

αj

2πi

∫
C

dz

z − zj
−

m∑
j=1

βj

2πi

∫
C

dz

z − wj
. (9.34)

Next enclose each zero and pole of f(z) with disjoint circles containing no
other zeros or poles. Then, just as we went from (9.30) to (9.32), so may we
go from (9.34) to

1
2πi

∫
C

f ′(z)
f(z)

dz =
n∑

j=1

αj −
m∑

j=1

βj = Nf − Pf , (9.35)

and the proof is complete.
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Examples 9.40. Let us now illustrate Theorem 9.39 by simple examples.

(i) Suppose that f is given by

f(z) =
(z + 1)(z + 7)5(z − i)2

(z2 − 2z + 2)4(z + i)8(z − 5i)8

and C = {z : |z| = 2}. Then, examining the numerator of f(z) shows
that inside C, f has a simple zero at z = −1, and a zero of order 2 at
z = i. Therefore, the number N of the zeros of f inside C is

N = 1 + 2 = 3.

Similarly, as z2 − 2z +2 = (z− 1)2 +1 = 0 implies that z = 1± i, inside
C, f has a pole at z = 1 + i (order 4), z = 1 − i (order 4) and z = −i
(order 8). Thus, the number P of the poles of f inside C is

P = 4 + 4 + 8 = 16.

According to Theorem 9.39,∫
|z|=2

f ′(z)
f(z)

dz = 2πi(N − P ) = −26πi.

(ii) Let us use the Argument principle to evaluate

I =
∫

C

z + i

z2 + 2iz − 4
dz, C = {z : |z + 1 + i| = 2}.

Note that this integral may be evaluated either by the Cauchy integral
formula or the residue theorem. We rewrite I as

I =
1
2

∫
C

f ′(z)
f(z)

dz, f(z) = (z + i)2 − 3.

Note that the zeros of f are given by z = ±
√

3 − i. We observe that
−i +

√
3 lies outside C, while z = −

√
3 − i lies inside C. Consequently,

by Theorem 9.39, we have

I =
1
2
(2πi) = πi.

(iii) We easily see that∫
|z|=2

dz

3z + 4
=

1
3

∫
|z|=2

3
3z + 4

dz =
1
3
(2πi) (with f(z) = 3z + 4).
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(iv) To evaluate I =
∫
|z|=2

z + 2
z(z + 1)

dz, we may rewrite it as

I =
∫
|z|=2

1
z2 + 2

z3

1
z + 1

z2

dz = −
∫
|z|=2

f ′(z)
f(z)

dz,

where
f(z) =

1
z

+
1
z2

=
z + 1
z2

.

Then, by the Argument principle,

I = −2πi[Nf − Pf ] = −2πi[1 − 2] = 2πi.

This can be checked by using partial fractions and Cauchy’s integral
formula:

I =
∫
|z|=2

z + 1 + 1
z(z + 1)

dz =
∫
|z|=2

dz

z
+

∫
|z|=2

(
1
z
− 1

z + 1

)
dz

= 2πi + 2πi − 2πi = 2πi. •
It seems strange indeed that (9.35) is always an integer regardless of the

function f(z) or the closed contour C. This phenomenon is based on properties
of the logarithm. Suppose that f(z) is analytic and nonzero for all z on a
simple closed contour C. Set

log f(z) = ln |f(z)| + i arg f(z),

where a fixed branch for the logarithm is chosen. Then∫
C

f ′(z)
f(z)

dz =
∫

C

d(log f(z)) = ln |f(z)|
∣∣∣
C

+ i arg f(z)
∣∣∣
C

. (9.36)

Since the initial and terminal points of the closed contour C must coincide,
ln |f(z)| |C= 0. Hence (9.36) simplifies to∫

C

f ′(z)
f(z)

dz = i arg f(z)
∣∣∣
C

. (9.37)

Thus the value of the integral depends only on the net change in the argument
of f(z) as z traverses the contour C.

Now the image of the simple closed contour C under f(z) is a closed
contour C ′, which need not be simple. We illustrate two cases:

Case 1: If f(z) has no zero inside C, then C ′ does not surround the origin.
Therefore, arg f(z) returns to its original value as f(z) traverses the contour
C ′ (see Figure 9.10). Let z0 ∈ C be mapped to w0 ∈ C ′. As z0 traverses the
contour C once in the positive direction, w0 traverses C ′ an integer number
of times in the positive or negative direction. However, the number
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u

Figure 9.10.

arg f(z)
∣∣∣
z=z0

= arg f(z0) = arg w0

does not change as z0 travels once or several times along C. For example, in
Figure 9.10, arg w0 increases to arg A (up to the point A) then decreases and
when w0 returns to its initial position, arg w0 returns to its initial value. This
means that the net change in arg f(z), as z traverses the contour C, is zero.
That is,∫

Γ=f(C)

dw

w
=

∫
C

df(z)
f(z)

dz =
∫

C

f ′(z)
f(z)

dz = i arg f(z)
∣∣∣
C

= 0.

Case 2: If f(z) does have zeros inside C, then C ′ must wrap around the
origin (Why?). Each time that C ′ winds around the origin (in the positive
sense), the argument of f(z) is increased by 2π. In Figure 9.11, we show a
simple closed contour C being mapped by f(z) = z2 onto a closed contour C ′

that twice winds around the origin. When z returns to its initial point on C,
arg f(z) has increased by 4π along C ′.

Figure 9.11.
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Note that we are not concerned with whether or not the origin is inside
the simple closed contour C. The origin only plays a critical role relative to
the image curve C ′. The net change in arg f(z) as z traverses a contour C is
called the variation of arg f(z) along C, and is denoted by ΔC arg f(z). This
notation allows us to write (9.37) as∫

C

f ′(z)
f(z)

dz = iΔC arg f(z).

Hence the conclusion of Theorem 9.39 can be expressed as

1
2π

ΔC arg f(z) = Nf − Pf . (9.38)

Geometrically, the identity in (9.38) is known as the Argument Principle.

Remark 9.41. For each zero of f(z) inside C, the curve C ′ winds once around
the origin in the positive sense, whereas for each pole of f(z) inside C, the
curve C ′ winds once around the origin in the negative sense. To prove this, we
need a careful definition of winding number (see Ahlfors [A] and Ponnusamy
[P1]). •

The following two lemmas are consequences of the argument principle.

Lemma 9.42. Suppose f(z) and g(z) are analytic inside and on a simple
closed contour C with f(z) and g(z) having no zeros on C. Then

ΔC arg f(z)g(z) = ΔC arg f(z) + ΔC arg g(z).

Proof. Let f(z) and g(z) have N1 and N2 zeros respectively inside C. Then,
by the argument principle,

1
2π

ΔC arg f(z) = N1 and
1
2π

ΔC arg f(z) = N2.

But f(z)g(z) has N1 + N2 zeros inside C. Hence

1
2π

ΔC arg f(z)g(z) = N1 + N2,

and the proof is complete.

Lemma 9.43. Suppose h(z) is analytic on a simple closed contour C with
|h(z)| < 1 for all z on C. Then ΔC arg(1 + h(z)) = 0.

Proof. The simple closed contour C is mapped by w = F (z) = 1+h(z) onto a
closed contour C ′ contained in the disk |w−1| < 1 (see Figure 9.12). Since this
disk is in the right half-plane, we may cut the plane along the negative real
axis to obtain a branch (the principle branch) for arg F (z) as F (z) traverses
C′. Thus

1
2π

ΔC arg F (z) =
1
2π

ΔC arg(1 + h(z)) = 0.
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Figure 9.12.

Remark 9.44. The function F (z) = 1+h(z) need not be analytic for z inside
C in order for a branch of log F (z) to exist for z on C. In view of the argument
principle, we have merely shown that F (z) has the same number of zeros and
poles inside C. For example, h(z) = 1/(2z) satisfies the inequality |h(z)| < 1
on the unit circle. The function

F (z) = 1 + h(z) =
1 + 2z

2z

has one simple zero (at z = −1/2) and simple pole (at the origin). •
Theorem 9.45. (Rouché’s Theorem) Suppose f(z) and g(z) are analytic
inside and on a simple closed contour C, with |g(z)| < |f(z)| on C. Then
f(z) + g(z) has the same number of zeros as f(z) inside C.

Proof. By hypothesis, |g(z)| < |f(z)| on C, which implies that on C

|f(z)| > 0 and |f(z) + g(z)| ≥ |f(z)| − |g(z)| > 0.

Thus, f and f + g are analytic inside and on C with f and f + g having no
zeros on C. Since f and g are analytic, Pf = 0 = Pf+g. If we write

f + g = f(1 + g/f) := fφ,

then

(f + g)′(z) = f ′(z)
(

1 +
g(z)
f(z)

)
+ f(z)

(
1 +

g(z)
f(z)

)′

so that

(f + g)′(z)
(f + g)(z)

=
f ′(z)
f(z)

+

(
1 + g(z)

f(z)

)′

1 + g(z)
f(z)

=
f ′(z)
f(z)

+
φ′(z)
φ(z)

.

Let Nf and Nf+g denote the number of zeros of f and f + g respectively on
the domain which is bounded by C. By the Argument Principle,
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Nf+g − Nf =
1

2πi

∫
C

(
(f + g)′(z)
(f + g)(z)

− f ′(z)
f(z)

)
dz =

1
2πi

∫
C

φ′(z)
φ(z)

dz.

Since |g(z)/f(z)| < 1 on C, φ(z) lies in the disc |w− 1| < 1 for z ∈ C. Taking
a branch of the logarithm on the simply connected domain |w−1| < 1 (which
does contain the origin), we have

φ′(z)
φ(z)

=
d

dz
log(φ(z)).

Thus, the integral on the right is zero. That is, Nf+g = Nf .
Alternatively, by Lemma 9.42,

ΔC arg(f(z) + g(z)) = ΔC arg f(z) + ΔC arg
(

1 +
g(z)
f(z)

)
. (9.39)

Since |g(z)/f(z)| < 1 on C, Lemma 9.43 may be applied to obtain

ΔC arg
(

1 +
g(z)
f(z)

)
= 0.

Hence (9.39) reduces to

1
2π

ΔC arg(f(z) + g(z)) =
1
2π

ΔC arg f(z). (9.40)

Then, by (9.40) and the argument principle, the theorem follows.

The proof of Rouché’s theorem was “geometric” in character. We now give
an “analytic” proof.

Alternate proof of Rouché’s Theorem. Let {φt(z)} be a family of func-
tions defined by

φt(z) = f(z) + tg(z) (0 ≤ t ≤ 1).

Then, for each t, φt is analytic inside and on C having no poles inside or on
C. Also, since |f(z)| < |g(z)| on C, we have

|φt(z)| = |f(z) + tg(z)| ≥ |f(z)| − |g(z)| > 0 for z ∈ C

and so φt does not have a zero on C. Since |f(z)|− |g(z)| is continuous on the
compact set C, it attains a minimum, say m. Thus for all z on C,

|φt(z)| ≥ m > 0 (0 ≤ t ≤ 1). (9.41)

Define

h(t) =
1

2πi

∫
C

φ′
t(z)

φt(z)
dz.

Observe that h(t) denotes the number of zeros of φt(z) inside C. We want to
show that h(0) = h(1). Now, given any points t1 and t2 in [0, 1], we have
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h(t2) − h(t1) =
1

2πi

∫
C

(
f ′ + t2g

′

f + t2g
− f ′ + t1g

′

f ′ + t1g

)
dz (9.42)

=
1

2πi

∫
C

(t2 − t1)(g′f − f ′g)
(f + t2g)(f + t1g)

dz.

Since f(z), g(z), f ′(z), and g′(z) are analytic on C, they are bounded, and
we may assume that

|f(z)|, |g(z)|, |f ′(z)|, |g′(z)| ≤ M. (9.43)

Denote the length of C by L. Then, from (9.41), (9.42), and (9.43), we get

|h(t2) − h(t1)| ≤
1
2π

|t2 − t1|2M2

m2
L = K|t2 − t1|,

where K is constant independent of t1 and t2, so that h(t) is a continuous
function on [0, 1]. Since h(t) is integer-valued, it follows (by the intermediate
value theorem) that h(t) is constant on [0, 1]. In particular, h(0) = h(1) where
h(0) and h(1) are, respectively, the number of zeros of φ0(z) = f(z) and the
number of zeros of φ1(z) = f(z) + g(z) inside C. The proof is complete.

Remark 9.46. In Rouché’s theorem, the condition |g(z)| < |f(z)| on C can-
not be relaxed to |g(z)| ≤ |f(z)|. This is seen by setting

g(z) = −f(z).

Then f(z) + g(z) ≡ 0 inside C regardless of the number of zeros of f(z). •
Corollary 9.47. Let g be analytic for |z| ≤ 1 and |g(z)| < 1 for |z| = 1. Then
g has a unique fixed point in |z| < 1.

Proof. For |z| = 1, |g(z)| < |− z| = 1. By Rouche’s theorem, we have g(z)− z
has exactly one zero in |z| < 1 and the conclusion follows.

We ask what happens if we replace |g(z)| < 1 with |g(z)| ≤ 1 in Corollary
9.47? If

g(z) =
z − a

1 − az
(0 < |a| < 1),

then g is analytic for |z| ≤ 1 and |g(z)| = 1 for |z| = 1. Moreover,

g(|z| < 1) ⊂ {w : |w| < 1}

and we easily see that
g(z) = z ⇐⇒ z2 = a/a

which shows that, for each a with 0 < |a| < 1, g(z) = z has no solution in
|z| < 1.

Next we ask: what happens if we simply assume that f is analytic for
|z| < 1 and |f(z)| < 1 for |z| < 1? Of course, f(z) = z shows that every point
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of |z| < 1 is a fixed point. Suppose that f(z) �≡ z. Can f have more than one
fixed point in |z| < 1?

To answer this, we suppose that f has two fixed points, say a and b, in
|z| < 1. Consider

φ(z) =
a − z

1 − az
.

Then, φ(a) = 0 and φ is its own inverse. Set φ(b) = α. Then α �= 0, because
φ is one-to-one. Define g = φ ◦ f ◦ φ−1 and see that

g(0) = φ ◦ f ◦ φ−1(0) = φ(f(a)) = φ(a) = 0
g(α) = φ ◦ f ◦ φ−1(α) = φ(f(b)) = φ(b) = α.

By Schwarz’s lemma, |g(z)| ≤ |z|. But, because equality is attained at an
interior point α, we have g(z) = eiηz for some real constant η. The condition
g(α) = α shows that g must be the identity function. Thus, f(z) = z which
is a contradiction.

As a first application of Rouché’s theorem, we prove

Theorem 9.48. (Hurwitz’s Theorem) Let {fn(z)} be a sequence of func-
tions analytic inside and on the simple closed contour C, and suppose {fn(z)}
converges uniformly to f(z) inside and on C. If f(z) has no zeros on C, then
the number of zeros of f(z) inside C is equal to the number of zeros of fn(z)
inside C for sufficiently large n.

Proof. First note that according to Theorem 8.16, the limit function f(z) is
analytic inside and on C. Let m > 0 denote the minimum of |f(z)| on C. By
the uniform convergence of {fn(z)} on C, we have for n > N(m) that

|fn(z) − f(z)| < m ≤ |f(z)|

on C. Hence by Rouché’s theorem, the number of zeros of f(z) inside C equals
the number of zeros of

f(z) + (fn(z) − f(z)) = fn(z) (n > N).

Rouché’s theorem furnishes us with yet another proof for the fundamental
theorem of algebra.

Theorem 9.49. (Fundamental Theorem of Algebra) If

Pn(z) = a0 + a1z + · · · + an−1z
n−1 + anzn (an �= 0)

is a polynomial of degree n, then it has n zeros in C.

Proof. Note that for z �= 0,

Pn(z)
anzn

= 1 +
1
an

(an−1

z
+ · · · +

a0

zn

)
.
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Then for |z| = r > 1,∣∣∣∣Pn(z)
anzn

− 1
∣∣∣∣ ≤

[ |an−1|
r

+ · · · +
|a0|
rn

]
1

|an|

≤ |a0| + |a1| + · · · + |an−1|
|an|r

< 1 if r > max{(|a0| + · · · + |an−1|)/|an|, 1}.

That is,
|Pn(z) − anzn| < |anzn| for |z| = r.

Since anzn has n zeros (all at the origin) inside |z| = r, so does the function

(Pn(z) − anzn) + anzn = Pn(z).

Remark 9.50. This proof of the fundamental theorem is more satisfying than
the previous proofs. First, we get directly that the polynomial has n roots (as
opposed to “at least one root”). Second, and more important, we get a bound
on the modulus of the roots in terms of the coefficients. We know that all the
roots lie in the disk

|z| ≤ |a0| + |a1| + · · · + |an−1|
|an|

(|z| > 1).

Rouché’s theorem will frequently be an aid in approximating the location of
zeros for an analytic function. •
Example 9.51. Let us use Rouche’s theorem to determine the number of
zeros of the polynomial p(z) = z10 −6z9 −3z +1 inside the unit circle |z| = 1.
To do this, we set

p(z) = f(z) + g(z),

where f(z) = −6z9 + 1 and g(z) = z10 − 3z. Then for |z| = 1,

|f(z)| = | − 6z9 + 1| ≥ |6z9| − 1 = 6 − 1 = 5

and
|g(z)| = |z10 − 3z| ≤ |z|10 + 3|z| = 4 < 5 ≤ |f(z)|.

By Rouche’s theorem, f(z) and p(z) have the same number of zeros inside
|z| = 1. But f(z) has nine zeros inside the unit circle |z| = 1. Therefore, p(z)
has nine zeros in |z| < 1. •
Example 9.52. Let us show that all five roots of the polynomial

P (z) = z5 + 6z3 + 2z + 10

lie in the annulus 1 < |z| < 3.
To see this, we let f(z) = z5 + 6z3 + 2z and g(z) = 10. On |z| = 1,
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|f(z)| ≤ |z5| + 6|z3| + 2|z| = 9 < |g(z)| = 10.

Hence P (z) = f(z) + g(z) has the same number of zeros in |z| < 1 as does
g(z), namely none. Observe that

|P (z)| ≥ 10 − |z5 + 6z3 + 2z| ≥ 10 − |z|5 − 6|z|3 − 2|z| = 1 on |z| = 1

and so P (z) can have no zeros on the unit circle |z| = 1.
Next let f(z) = z5 and g(z) = 6z3 + 2z + 10. On |z| = 3,

|g(z)| ≤ 6(33) + 2(3) + 10 < |f(z)| = 35.

Thus all the zeros of P (z) must lie in |z| < 3, that is, in the annulus 1 < |z| < 3.
By setting f(z) = 6z3 and g(z) = z5 + 2z + 10, we can further show that

three of the roots of P (z) lie in the annulus 1 < |z| < 2 and, consequently,
that the other two lie in the annulus 2 < |z| < 3. •
Example 9.53. We easily show that all the roots of

z5 − 3z2 − 1 = 0

lie inside the circle |z| = 22/3 and that two of its roots lie inside the circle
|z| = 3/4. To do this we first set

f(z) = z5 and g(z) = −3z2 − 1.

Then, on |z| = 22/3, |f(z)| = |z|5 = 210/3 and

|g(z)| ≤ 3|z|2 + 1 = 3(24/3) + 1 < 210/3 = |f(z)|,

showing that f and f + g have the same number of zeros inside the circle
|z| = 22/3. But f has five zeros inside |z| = 22/3. Thus f + g and hence all the
roots of given equation lie in |z| < 22/3.

Also, on |z| = 3/4, we have |f(z)| = |z|5 = (3/4)5 and

|g(z)| ≥ 3|z|2 − 1 = 3(3/4)2 − 1 = 11/16 > (3/4)5 = |f(z)|.

It follows that g and f + g have the same number of zeros in |z| < 3/4. But
g has two zeros at z = ±i/

√
3 which lies inside the circle |z| = 3/4. Hence

the given equation has two roots inside |z| = 3/4. Consequently, the given
equation has three zeros in 3/4 ≤ |z| < 22/3. •
Example 9.54. Consider f(z) = z2 + 7z + 12 − c. Then for |z| ≤ 1,

|z2 + 7z + 12| = |(z + 3)(z + 4)| ≥ 2(3) = 6.

Therefore, if |c| < 6, then f(z) �= 0 in the unit disc |z < 1. •
As a final application of Rouché’s theorem, we prove
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Theorem 9.55. (Open Mapping Theorem) A nonconstant analytic func-
tion maps open sets onto open sets.

Proof. Suppose f(z) is analytic at z = z0. We must show that the image of
every sufficiently small neighborhood of z0 in the z plane contains a neigh-
borhood of w0 = f(z0) in the w plane. Choose δ > 0 such that the function
f(z) − w0 is analytic in the disk |z − z0| ≤ δ and contains no zeros on the
circle |z − z0| = δ. This is possible in view of Corollary 8.48. Let m be the
minimum value of |f(z)−w0| on the circle |z− z0| = δ. We will show that the
image of the disk |z − z0| < δ under f(z) contains the disk |w −w0| < m (see
Figure 9.13).

y v

x u

z0

δ

f (z)

w1

w0m

Figure 9.13.

Choose w1 in the disk |w − w0| < m. Then on the circle |z − z0| = δ we
have

|w0 − w1| < m ≤ |f(z) − w0|.
Hence by Rouché’s theorem,

(f(z) − w0) + (w0 − w1) = f(z) − w1

has the same number of zeros in |z−z0| < δ as does f(z)−w0. Since f(z)−w0

has at least one zero (at z0), the function f(z) − w1 has at least one zero.
That is, f(z) = w1 at least once. Since w1 is arbitrary, the image of the disk
|z − z0| < δ must contain all points in the disk |w − w0| < m.

Corollary 9.56. A nonconstant analytic function maps a domain onto a do-
main.

Proof. Recall that a domain is an open connected set. In view of the theorem,
we need only show that an analytic function maps connected sets onto con-
nected sets. But this follows from Exercise 2.46(13) since an analytic function
is continuous.

The open mapping theorem provides a short proof of the maximum mod-
ulus theorem.
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Figure 9.14.

Suppose f(z) is analytic in a domain D and that z0 is a point in D. If
f(z) is not constant, then the image of some disk |z − z0| < δ contains a
disk |w − f(z0)| < m in the w-plane. If f(z0) = Reiθ0 , then to each ε, that
f(z′) = (R + ε)eiθ0 (see Figure 9.14). Thus,

|f(z′)| = R + ε > |f(z0)| = R,

so that z0 is not a maximum for |f(z)|.
We end the section with the following corollary which has been proved

earlier by a different method (see Theorem 5.37).

Corollary 9.57. If f is analytic in a domain D and if any one of Re f , Im f ,
|f |, or Arg f is constant, then f is also constant.

Proof. By hypothesis, f(D) would be a subset of either the real axis, or imag-
inary axis, or a circle or a line with constant argument, respectively. Note
that none of them forms an open set. The conclusion follows from the open
mapping theorem.

Questions 9.58.

1. Can f(z) be analytic in a deleted neighborhood of z0 even when the
limit limz→z0(z − z0)nf(z) does not exist for any integer n?

2. What is the significance of the constant 2πi?
3. How do the properties of ΔC arg f(z) and log f(z) compare?
4. Can Rouché’s theorem be used to locate the quadrants of zeros for an

analytic function?
5. Can Rouché’s theorem be extended to the case when there are poles

inside the contour?
6. Does a nonconstant continuous function map open sets onto open sets?
7. Does an analytic function map closed sets onto closed sets?
8. Let f be an entire function such that

∫
|z|=R

f ′(z)
f(z) dz = 0 for all R > 200.

Is f a constant?
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Exercises 9.59.

1. If f(z) is analytic inside and on the simple closed contour C, and f(z) �=
a on C, show that the number of times f(z) assumes the value a inside
C is given by

1
2πi

∫
C

f ′(z)
f(z) − a

dz.

2. Let f(z) be analytic inside and on a simple closed contour C except for
a finite number of poles inside C. Denote the zeros by z1, . . . , zn (none
of which lies on C) and the poles by w1, . . . , wm. If g(z) is analytic
inside and on C, prove that

1
2πi

∫
C

g(z)
f ′(z)
f(z)

dz =
n∑

j=1

g(zj) −
m∑

j=1

g(wj),

where each zero and pole occurs as often in the sum as is required by
its multiplicity.

3. If P (z) = a0 + a1z + · · · + anzn, evaluate

1
2πi

∫
|z|=R

zP ′(z)
P (z)

dz

for large values of R.
4. Using the argument principle, prove the Fundamental Theorem of Al-

gebra.
5. If f(z) is analytic at z0, show that f(z) has a zero of order k at z0 if

and only if 1/f(z) has a pole of order k at z0.
6. If f(z) is analytic and nonzero in the disk |z| < 1, prove that for 0 <

r < 1

exp
(

1
2π

∫ 2π

0

log |f(reiθ)| dθ

)
= |f(0)|.

7. Show that the polynomial z4 + 4z − 1 has one root in the disk |z| < 1/3
and the remaining three roots in the annulus 1/3 < |z| < 2.

8. Find the number of roots of the equation z4 − 8z + 10 = 0 in the unit
disk |z| < 1 and in the annulus 1 < |z| < 3, respectively.

9. Show that there exists one root in |z| < 1, and three roots in |z| < 2 for
the equation z4 − 6z + 3 = 0.

10. If a > e, show that the equation ez = azn has n roots inside the unit
circle. When n = 2, show that both roots are real.

11. If a > 1, prove that f(z) = z + e−z takes the value a at exactly one
point in the right half-plane.

12. Show that the equation z3 + iz + 1 = 0 has neither a real root nor a
purely imaginary root.

13. Show that the number of roots of the equation z4 − 6z + 1 = 0 in the
annulus 1 < |z| < 2 is 3.
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14. Let F1(z) = z5 +z+16, F2(z) = z7−5z3−12 and F3(z) = z7 +6z3 +12.
Determine whether all zeros of these functions lie in the annulus 1 <
|z| < 2.

15. Show that the polynomial z3 − z2 + 4z + 5 has all its roots in the disk
|z| < 3.

16. How many roots of the equation z4 + z3 + 1 = 0 have modulus between
3/4 and 3/2?

17. Show that, however small R, all the zeros of the function

1 +
1
z

+
1

2!z2
+ · · · +

1
n!zn

lie in the disk |z| < R, if n is sufficiently large.
18. Suppose that f(z) is analytic for |z| ≤ 1 such that |f(z)| < 1 for |z| = 1.

Show that f(z) = zn has exactly n solutions in |z| < 1.
19. Suppose {fn(z)} is a sequence of analytic functions that converge uni-

formly to f(z) on all compact subsets of a domain D. Let fn(zn) = 0
for every n, where each zn belongs to D. Show that every limit point of
{zn} that belongs to D is a zero of f(z).

20. Suppose that f(z) is analytic at z0 and that f(z) − f(z0) has a zero
of order n at z0. Show that there exist neighborhoods N(z0; δ) and
N(f(z0); ε) such that each point in N(f(z0); ε) is the image of at least
one and at most n distinct points in N(z0; δ).

21. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Show that there exists
an analytic function g(z) such that f(g(z)) = z in some neighborhood
of z0. This is known as the inverse function theorem.
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Index of Special Notations

Symbol Meaning for
∅ empty set

a ∈ S a is an element of the set S

a �∈ S a is not an element of S

{x : . . . } set of all elements with the property . . .

X ∪ Y set of all elements in X or Y ;
i.e., union of the sets X and Y

X ∩ Y set of all elements in X as well as in Y ;
i.e., intersection of the sets X and Y

X ⊆ Y set X is contained in the set Y ; i.e., X is a subset of Y

X ⊂ Y or X � Y X ⊆ Y and X �= Y ;
i.e., set X is a proper subset of Y

X × Y Cartesian product of sets X and Y ,
{(x, y) : x ∈ X, y ∈ Y }

X \Y or X − Y set of all elements that live in X but not in Y

Xc complement of X

=⇒ implies (gives)

⇐⇒ if and only if, or ‘iff’

−→ or → converges (approaches) to; into

�−→ or �→ does not converge

�=⇒ does not imply

N set of all natural numbers, {1, 2, · · · }
N 0 N ∪ {0} = {0, 1, 2, · · · }
Z set of all integers (positive, negative and zero)

Q set of all rational numbers, {p/q : p, q ∈ Z, q �= 0}
R set of all real numbers, real line

R∞ R ∪ {−∞,∞}, extended real line

C set of all complex numbers, complex plane
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C∞ extended complex plane, C ∪ {∞}
Rn n-dimensional real Euclidean space,

the set of all n-tuples x = (x1, x2, . . . , xn),
xj ∈ R, j = 1, 2, . . . , n

iR set of all purely imaginary numbers, imaginary axis

z z := x − iy, complex conjugate of z = x + iy

|z|
√

x2 + y2, modulus of z = x + iy, x, y ∈ R

Re z real part x of z = x + iy

Im z imaginary part y of z = x + iy

arg z set of real values of θ such that z = |z|eiθ

Arg z argument θ ∈ arg z such that −π < θ ≤ π;
the principal value of arg z

lim sup |zn| upper limit of the real sequence {|zn|}
lim inf |zn| lower limit of the real sequence {|zn|}
lim |zn| limit of the real sequence {|zn|}
supS least upper bound, or the supremum,

of the set S ⊂ R∞
inf S greatest lower bound, or the infimum,

of the set S ⊂ R∞
infx∈D f(x) infimum of f in D

max S the maximum of the set S ⊂ R;
the largest element in S

minS the minimum of the set S ⊂ R;
the smallest element in S

f : D −→ D1 f is a function from D into D1

f(z) the value of the function at z

f(D) set of all values f(z) with z ∈ D;
i.e., w ∈ f(D) ⇐⇒ ∃ z ∈ D such that f(z) = w

f−1(D) {z : f(z) ∈ D}, the preimage of D w.r.t f

f−1(w) the preimage of one element {z}
f ◦ g composition mapping of f and g

dist (z,A) distance from the point z to the set A
i.e., inf{|z − a| : a ∈ A}

dist (A, B) distance between two sets A and B
i.e., inf{|a − b| : a ∈ A, b ∈ B}
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[z1, z2] closed line segment connecting z1 and z2;
{z = (1 − t)z1 + tz2 : 0 ≤ t ≤ 1}

(z1, z2) open line segment connecting z1 and z2;
{z = (1 − t)z1 + tz2 : 0 < t < 1}

Δ(a; r) open disk {z ∈ C : |z − a| < r} (a ∈ C, r > 0)

Δ(a; r) closed disk {z ∈ C : |z − a| ≤ r} (a ∈ C, r > 0)

∂Δ(a; r) the circle {z ∈ C : |z − a| = r}
Δr Δ(0; r)

Δ Δ(0; 1), unit disk {z ∈ C : |z| < 1}
∂Δ unit circle {z ∈ C : |z| = 1}
ez exp(z) =

∑
n≥0

zn

n! , an exponential function

Log z ln |z| + iArg z, − π < Arg z ≤ π

log z ln |z| + i arg z := Log z + 2kπi, k ∈ Z

∂

∂z

1
2

(
∂

∂x
− i

∂

∂y

)
, Cauchy–Riemann operator

∂

∂z

1
2

(
∂

∂x
+ i

∂

∂y

)

fz
∂f

∂z
, partial derivative w.r.t z

fz
∂f

∂z
, partial derivative w.r.t z

Int (γ) interior of γ

Ext (γ) exterior of γ

γ1 + γ2 sum of two curves γ1, γ2

L(γ) length of the curve γ

f (n)(a) n-th derivative of f evaluated at a

f(z) = O(g(z))
as z → a

}
there exists a constant K such that |f(z)| ≤ K|g(z)|

for all values of z near a

f(z) = o(g(z))
as z → a

}
lim
z→a

f(z)
g(z)

= 0

lim
n→∞ zn = z,

or zn → z, or
d(zn, z) → 0

⎫⎬
⎭ sequence {zn} converges to z with a metric d

Res [f(z); a] residue of f at a



Index

nth roots of unity, 19
arg z, 15
cos z, 96

zeros of, 96
ε neighborhood, 26
sinh z, 98
sin z, 96

zeros of, 96
Aut (D), 398

absolute convergence of a series, 155
absolute convergence of power series,

174
absolute value, 7
absolutely convergent

of infinite product, 415
additive inverse, 3
algebraic number, 13
analytic automorphisms, 397
analytic continuation

chain, 448
direct, 447
of gamma function, 462
of Riemann-zeta function, 463

analytic function, 131
analytic functions

Poisson integral formula, 360
analytic logarithm, 239
analytic part, 289
angle between curves, 381
antiderivative(s), 195, 217, 218, 222, 232
arc, 197

length of, 209
arc length, 209

argument, 15
Argument principle, 333
associative law, 2
automorphism group, 398

bianalytic, 384
Bieberbach Conjecture, 409
bilinear transformations, 68

disk onto disk, 76, 77
half-plane onto disk, 74, 75
half-plane onto half-plane, 76

Bolzano–Weierstrass, 36
Borel–Carathéodory, 355
boundary of a set, 28
boundary point, 28
bounded sequence, 34, 159
bounded set, 26
branch, 110

of logarithm, 110
of square root function, 116

branch cut, 111, 116
branch of z1/2, 116

Casorati–Weierstrass theorem, 298
Cauchy Criterion, 37
Cauchy criterion, 154

for sequences, 154
Cauchy sequence, 36
Cauchy’s “weak” theorem, 220
Cauchy’s inequality, 263
Cauchy’s integral formula, 244

generalized, 247
Cauchy’s theorem, 234, 237

for a disk, 233
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Cauchy’s theorem (Continued)
for a multiply connected region, 237
for a rectangle, 226
weak form of, 220

Cauchy–Goursat, 226
Cauchy–Hadamard formula, 177
Cauchy–Riemann equations, 125

complex form, 127
polar form of, 135
sufficient condition for analyticity,

132
chain, 448

rule, 135
chordal distance, 57
chordal metric, 57
circle in C, 9
circle of convergence, 175
closed curve, 197
closed set, 27
closure, 27
commutative law, 2
commutative property, 6
compact normal family, 394
compact set, 40
complement, 28
complete, 35, 37
complex exponents, 91
complex line integral, 202
complex logarithm, 109
complex number, 2

nth roots of, 18
absolute value of, 7
conjugate of, 7
modulus of, 7
polar form of, 15
vector representation, 6

complex number system, 45
extended, 45

complex numbers, 1
complex plane, 6
complex Poisson integral, 362
complex-valued function, 29
conformal mapping, 381

bilinear transformations, 386
conformal self-mapping, 398
conformally equivalent, 399
conjugate, 7
connected set, 29
continuous curve, 197

continuous function, 50
continuous piecewise smooth, 200
continuously differentiable, 200
contour, 208
contour integral, 202
convergence

circle of, 175
disk of, 176
of sequences, 32
of series, 153
pointwise, 164
radius of, 175
uniform, 164

convergence of a series, 153
convergence producing factor, 426
countable set, 40
critical line, 471
critical point, 386
critical strip, 470
cross ratio, 73

invariance, 73
curve, 197

continuous piecewise smooth, 200
piecewise smooth, 208

De Moivre’s law, 92
De Moivre’s theorem, 18
Dedekind property, 35, 159
deleted neighborhood, 27, 57

of infinity, 57
dense set, 392
differentiable function, 123
differentiation of series, 180
digamma function, 437
direct analytic continuations, 447
Dirichlet problem, 364

for a disk, 364
for a half-plane, 370

disk of convergence, 176
divergence of series, 153
domain, 29

multiply connected, 198
simply connected, 197

domain of regularity, 451
domain set of a function, 48
dominated convergence test, 170

entire function, 131
equation of circle, 9
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equation of line, 8
equicontinuous, 391
essential singularity, 298
Euclidean distance, 57
Euler’s constant, 434
exponential function, 92, 187

addtion formula, 93
extended complex plane, 45
extended real number system, 44

Fibonacci sequence, 192, 194
field, 3

ordered, 4
finite complex plane, 45
fixed point, 71
Formula

Cauchy’s integral, 244
Cauchy–Hadamard, 177

function, 48
cos z, 96
sin z, 96
analytic, 131
bilinear, 68
continuous, 121

at z0, 50
on D, 50

differentiable, 123
domain set, 48
entire, 131
exponential, 92, 187
harmonic, 142
inverse, 49
meromorphic, 437
one-to-one, 48
onto, 48
preimage, 48
sectionally continuous, 208
univalent, 396

function element, 447
Fundamental Theorem of Algebra, 268,

341
proof by argument principle, 346
proof by Liouville’s theorem, 268
proof by minimum modulus theorem,

278
proof by residue concept, 330
proof by Rouché’s theorem, 341

fundamental theorem of calculus, 217

fundamental theorem of integration,
230

gamma function, 434
analytic continuation of, 462
integral definition of, 460
limit definition of, 459
product definition of, 434, 458

Gauss psi-function, 437
Gauss’s formula, 459
Gauss’s mean-value theorem, 275
geometric series, 158
glb, 34
greatest lower bound, 34
Green’s theorem, 218
Growth Lemma, 267

harmonic conjugate, 143
harmonic function, 142

congugate, 143
mean value property, 352

Harnack’s inequality, 371
Harnack’s principle, 373
Heine–Borel theorem, 41
Hurwitz’s theorem, 341

identity principle, 270
identity theorem, 271
image of a set, 48
imaginary axis, 6
imaginary part, 4
imaginary unit, 2
Inequality

Cauchy’s, 263
Harnack’s, 371
Schwarz, 14
triangle, 7

infinite product, 411
absolutely convergent, 415
converges, 411
diverges, 411

interior point, 26
inverse function, 49

theorem, 347
inverse of a function, 49
inverse points, 77

w.r.t circle, 78
inversion, 63
isogonal, 382
isolated point, 52
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isolated singularity, 293
at infinity, 300

Jordan curve, 197
Jordan Curve Theorem, 197

Koebe function, 409

Laplace’s equation, 142
polar form of, 143

Laurent series, 286
analytic part of, 289
principal part of, 289

Laurent’s theorem, 286
least upper bound, 34
Legendre’s formula, 471
Lemma

Growth, 267
Schwarz’s, 280

length of a vector, 7
limit inferior, 159
limit of a sequence, 32
limit point, 27
limit superior, 159
line in C, 8
line integral, 203

complex, 202
real, 203

linear fractional transformations, 66
linear function, 62
Liouville’s theorem, 264

generalised versions, 265
harmonic analog, 352
proof by Schwarz’s lemma, 281

locally bianalytic, 384
locally constant, 54
logarithm, 109

branch, 110
natural, 92
principal branch of, 111

logarithmic derivative, 331
logarithmic spiral, 103
lub, 34

M-L Inequality, 211
Maclaurin series (expansion), 183
magnification, 62
magnitude (length), 7
Maximum modulus theorem, 275, 276

proof by open mapping theorem, 344
Maximum principle, 354

for harmonic functions, 354
mean value property, 352
meromorphic function, 437
Minimum modulus theorem, 279
Minimum principle

for harmonic functions, 354
Mittag-Leffler theorem, 440
modulus, 7
Monodromy theorem, 199
Monodromy Theorem, 452
Montel’s theorem, 393
Morera’s theorem, 255
Mousetrap principle, 157
multi-valued functions

example of, 110
multiply connected domain, 198

natural boundary, 455, 456
natural logarithm, 92
neighborhood, 25, 26

deleted, 27
neighborhood of infinity, 45, 57
non-isolated singularity, 293
normal family, 392

compact, 394
north pole, 46, 57

one-point compactification, 45, 46
one-to-one function, 48
onto function, 48
open connected set, 29
open cover, 40
Open mapping theorem, 343
open set, 26
order relation, 4
ordered field, 4
orientation

negative, 199
positive, 199

orientation of a curve, 199
orthogonal circles, 10

Parallelogram identity, 10
parallelogram rule, 6
parameterized curve, 197
partial product, 412
partial sum, 153
period, 94
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periodic, 94
Picard’s great theorem, 299
Picard’s theorem, 266
piecewise smooth, 208

curve, 208
point at infinity, 25, 57
pointwise convergent, 164
Poisson integral formula

for analytic functions, 359
for harmonic functions, 361

Poisson kernel, 360
Polar form of complex numbers, 15
pole, 297
power series, 174

absolute convergence, 174
radius of convergence of, 175

preimage, 48
principal branch, 111

of z1/2, 116
of log z, 111

principal part, 289
principle

Argument, 333
Mousetrap, 157
uniqueness/identity, 270

quotient of entire functions, 438

radius of convergence of series, 175
range of a set, 48
ratio test, 162
rational functions, 304
real axis, 6
real part, 4
rectifiable curve, 211
reflection, 63
region, 29
regular, 199
regular point, 451, 453
removable, 297
removable singularity, 297
residue, 308

at ∞, 313
at a finite point z0, 308
at a pole, 311

Residue at a pole of order k, 311
Residue at a simple pole, 311
Residue theorem, 310, 314
Riemann mapping theorem, 400

Riemann sphere, 46
Riemann’s theorem on removable

singularity, 295
Riemann-zeta function, 463

analytic continuation, 464, 468
Root test, 162
roots of complex numbers, 18
rotation, 62
Rouché’s theorem, 338

Schwarz inequality for complex
numbers, 14

Schwarz’s Lemma, 280
Schwarz’s theorem, 364
Schwarz–Christoffel transformation, 403
sectionally continuous, 208
sequence

bounded, 34
of partial sums, 153

series, 153
absolutely convergent, 155
Laurent, 286
Maclaurin, 183
power, 174
product of, 189
root test, 162
Taylor, 184, 188

set
bounded, 26
closed, 27
compact, 40
connected, 29
countable, 40
open, 26
open connected, 29

simple closed curve, 197
simple curve, 197
simply connected, 197
singular point, 453
singularity, 293

at infinity, 300
essential, 298
isolated, 293
non-isolated, 293
pole of order k, 297
removable, 297

smooth, 200
curve, 200
piecewise, 200
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special functions, 458
stereographic projection, 46
subsequence, 34
symmetric points, 77

Taylor series, 184
Taylor series (expansion), 188
Taylor’s theorem, 249
Theorem

Open mapping, 343
Bolzano–Weierstrass, 36
Borel–Carathéodory, 355
Casorati–Weierstrass, 298
Cauchy Criterion, 37
Cauchy’s, 234, 237
Cauchy’s “Weak”, 220
Cauchy–Goursat, 226
Cauchy–Hadamard, 177
De Moivre’s, 18
Gauss’s mean-value, 275
Green’s, 218
Harnack’s principle, 373
Heine–Borel, 41
Hurwitz’s, 341
Identity, 271
inverse function, 347
Jordan Curve, 197
Laurent’s, 286
Liouville’s, 264
M-L Inequality, 211
Maximum modulus, 275, 276
Maximum Principle (harmonic), 354
Mean Value Property), 352
Minimum modulus, 279
Mittag-Leffler, 440
Monodromy, 199, 452
Montel’s, 393
Morera’s, 255

Picard’s, 266
Picard’s great, 299
Residue, 310, 314
Riemann mapping, 400
Riemann’s, 295
Rouché’s, 338
Schwarz’s, 364
Taylor’s, 249
Uniqueness, 270
Weierstrass product, 427

transcendental number, 13
transformation

Schwarz–Christoffel, 403
translation, 61
triangle inequality, 7
trichotomy, 4
trivial zeros, 470

uniform continuity, 54
uniform convergence, 164

of products of functions, 418
uniformly bounded, 390

locally, 390
uniformly Cauchy, 168
uniformly continuous, 54
uniqueness principle, 270
Uniqueness Theorem, 270
univalent function, 396

variation of the argument, 337
vector, 6

Weierstrass M-test, 170
Weierstrass product theorem, 427
winding number, 222

zeros
of an entire function, 423
of Riemann-zeta function, 471



Hints for Selected Questions and Exercises

Questions 1.1:

1. The set {0, 1, 2, . . . , p}, p a prime, is a field under the operations of
addition and multiplication modulo p.

2. Between any two elements in an ordered field there is another element.
8. We can see clearly the relationship between a complex number and a

point in the plane.
10. Closure. Even though (1, 1) > (0, 0), we have (1, 1)(1, 1) = (0, 2).

Exercises 1.2:

4. (a) (−5, 14) (b) 18−9i (c) −2+2i (d) −4 (e) 2(n/2)+1i sin nπ/4.

Questions 1.7:

4. |z1+z2| = |z1|+|z2| if and only if z1 and z2 lie on the same ray emanating
from the origin.

7. Because their product is rational.

Exercises 1.8:

1. (b) 13 − 6i (d)
√

2 (f)
√

2.
3. (b) (x + 5)2 + y2 > 42 (c) −1 ≤ x ≤ 1, y = 0 (d) y2 = −20(x − 5).

12. We require |z1| = |z2| = |z1 − z2| so that

|z1|2 = a2 + 1 = 1 + b2 = (a − 1)2 + (b − 1)2.

This gives a = ±b, a2 − 2a + 1− 2b = 0, b2 − 2b + 1− 2a = 0. Note that

a = ±b ⇒ b2 ∓ 2b + 1 − 2b = 0
⇒ b2 − 4b + 1 = 0
⇒ b = 2 ±

√
3

⇒ b = 2 −
√

3 ( as 0 < b < 1)

⇒ a = 2 −
√

3 ( as 0 < a < 1).

Thus the given points form an equilateral triangle if a = b = 2 −
√

3.
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13. As |zj | = 1 (j = 1, 2, 3), we have |z3−z1| = |z2−z3| iff z1z3 = z2z3. The
latter equation follows if we multiply z3 = −(z1 + z2) by z1 and z2 and
compare the resulting equations. Similarly, we can get |z3−z1| = |z2−z1|
and the assertion follows.

Questions 1.13:

2. The most important such function is f(x) = lnx.
9. Note that arg(1/z) = arg z.

13. Follow from text. A careful discussion may also be found in DePree and
Oehring [DO].

14. Expanding (1.15) gives some useful identities.
18. The roots of unity form a group under multiplication.
20. This is discussed in Chapter 4.

Exercises 1.14:

10. (a) ±(1 + i)/
√

2 (d) ± 4
√

2(cos(π/8) + i sin(π/8)) (g) ±(1 − i)/
√

2
11. We have ω3n+1 = ω and ω3n+2 = ω2 and so it is easy to see that

Sn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2ω if n = 3m
1 − ω

1 + ω
if n = 3m + 1,

1
ω

if n = 3m + 2

for m = 1, 3, 5, 7, . . . ,

and

Sn =

⎧⎨
⎩

0 if n = 3m

1 if n = 3m + 1,

1 − ω if n = 3m + 2
for m = 0, 2, 4, . . . .

12. There is nothing to prove if ω = 1. Therefore, we assume that ω is
different from 1. Since ω is a cube root of unity, we have ω2 = −1 − ω
and therefore

(a + bω + cω2)3

= (a + bω − c(1 + ω))3

= (a − c)3 + 3(a − c)[(b − c)ω][a − c + ω(b − c)] + (b − c)3

= (a − c)3 + (b − c)3 + 3(a − c)(b − c)[(a − c)ω + (b − c)ω2].

As (a− c)ω + (b− c)ω2 = (a− c)ω − (1 + ω)(b− c) = (a− b)ω − (b− c),
the right-hand side of the above expression is real iff

0 = Im [(a − b)ω − (b − c)]

and this holds if a = b. In this way we see that the required condition
is that a, b, c are not all different.

15. As n → ∞ the sum approaches 2π, the circumference of the unit circle.
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16. Rewrite the given equation as ((1 + z)/(1 − z))5 = 1, since z = 1 is not
possible. So, with z �= 1, the solution is given by

1 + z

1 − z
= ei2kπ/5; i.e., z =

1 − ei2kπ/5

1 + ei2kπ/5
, k = 0, 1, 2, 3, 4.

Writing the above equation as

z =
e−ikπ/5 − eikπ/5

e−ikπ/5 + eikπ/5
=

−2i sin(kπ/5)
2 cos(kπ/5)

, k = 0, 1, 2, 3, 4,

we see that all the roots of the given equation lie in the imaginary axis
at zk = −i tan(kπ/5), k = 0, 1, 2, 3, 4.

17. The roots of equation (z−1)5 = −1 are the vertices of a regular pentagon
having center at 1 and vertex at the origin respectively. Comparing the
above equation with the given equation we obtain α = −5, β = 10,
γ = −10, δ = 5 and η = 0.

18. Since |(1 + ix)/(ix − 1)| = 1, the equation ((ix + 1)/(ix − 1))n = ζ
(ζ = eiθ) becomes

ix + 1
ix − 1

= ei(θ+2kπ)/n,

that is

ix =
1 + ei(θ+2kπ)/n

−1 + ei(θ+2kπ)/n
=

2 cos[(θ + 2kπ)/2n]
2i sin[(θ + 2kπ)/2n]

,

where k = 0, 1, . . . , n − 1. So

x = cot
(
−

(
θ + 2kπ

2n

))
, i.e., θ = −2kπ − 2n cot−1(x).

Since ζ = eiθ, we have(
ix − 1
ix − 1

)n

= eiθ = ei(−2kπ−2n cot−1 x) = e−2in cot−1(x)

proving the assertion.

Questions 2.9:

4. Any set of real numbers that is closed is also a closed subset of the
plane. The empty set is the only set that is open in both the real line
and the plane.

6. The integers have no limit point.
7. A boundary point of a connected set with more than one point must be

a limit point.
8. A ∩ B ⊂ A∩B. To see that the containment is proper, let A denote the

set of irrational numbers and B denote the set of rational numbers.
10. This is known as a convex set.
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11. This is known as a starlike set. The plane minus the negative real axis
is starlike with respect to the origin, but is not convex.

Exercises 2.10:

4. (a) Bounded open set.
(b) Not open, not closed, not connected, not bounded.
(e) Open on the real line, connected, unbounded.

Questions 2.22:

2. Let xn = (−1)n and yn = (−1)n+1.
4. The sequence {xn}, where

xn =
{

1/n if n is odd
n if n is even ,

is an unbounded sequence with a limit point.
5. When the set is closed.
6. 2, 0, 1, 1, 1, . . . .
7. The set of rational numbers may be expressed as a sequence.

10. The sequence {bn} is increasing.

Exercises 2.23:

2. Construct disjoint neighborhoods about two distinct limit points.
4. (b), (c), (d).
5. Suppose that zn → z0. Then, given ε > 0 there exists an N (assume

N ≥ 2) such that |zn − z0| < ε/2 for all n ≥ N . Now for each n ≥ N,
we have∣∣∣∣∣ 1n

n∑
k=1

zk − z0

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

k=1

(zk − z0)

∣∣∣∣∣ ≤ 1
n

n∑
k=1

|zk − z0|

=
1
n

N−1∑
k=1

|zk − z0| +
1
n

n∑
k=N

|zk − z0|

<
1
n

N−1∑
k=1

|zk − z0| +
1
n

(n − (N − 1))
ε

2

< ε, whenever n ≥ max

{
N,

2
ε

N−1∑
k=1

|zk − z0|
}

.

6. (a) 1, 2, 1
2 , 2, 1

3 , 2, . . .

(b) 1, 2, . . . , n,
3
2
,
5
2
, . . . ,

2n + 1
2

, . . . ,
k + 1

k
,
2k + 1

k
, . . . ,

nk + 1
k

, . . .

(c) A sequence consisting of all the rational numbers.
8. 1, 2, 2 1

2 , 3, 3 1
3 , 3 2

3 , 4, 4 1
4 , 42

4 , 4 3
4 , 5, 5 1

5 , . . . .
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Questions 2.28:

2. The infinite union may not be compact. Each integer is compact, but
their union is not. Also, [0, 1−1/n] is compact for each n, but

⋃∞
n=2[0, 1−

1/n] is not compact.
3. It is open and unbounded.
5. If there are no limit points.
6. Infinitely many.

Exercises 2.29:

6. For p and q relatively prime positive integers, f(p, q) = 2p3q is a one-
to-one mapping of the positive rationals into the positive integers.

7. For each open set in the cover, choose a point in the set both of whose
coordinates are rational.

Questions 2.30:

2. A set containing a neighborhood of ∞ is unbounded, but the converse
does not hold. For instance, {z : Re z > 0} does not contain a neigh-
borhood of ∞.

6. They are identified with themselves.
8. The n + 1 sphere.

11. The image of the line x + y = 1 is given by the plane x1 + y1 + u1 = 1,
where x2

1+y2
1+u2

1 = 1. This is the intersection of the plane x1+y1+u1 =
1 and the Riemann sphere, which is a circle passing through the north
pole (0, 0, 1).

Exercises 2.31:

1. If z0 is a limit point, then N(∞; |z0| + 1) does not contain infinitely
many points of the sequence.

4.
(

x1

1 − u1
,

y1

1 − u1

)
.

6. Review Exercises 5 and 6 after reading Chapter 3.
7. See the book by S. Ponnusamy [P1].

Questions 2.45:

1. It might be confused with our definition of a domain as an open con-
nected set.

4. If points are always closer in the w plane, the function is uniformly
continuous. The converse is not true. Consider f(z) = 2z on a bounded
set.

5. All sequences are uniformly continuous. Just choose δ = 1.
7. It need not be a limit point; for instance, a constant function.
9. No such thing. The function is uniformly continuous on |z| ≥ ε for all

ε > 0.
10. A mapping from the unit disk onto two points.
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Exercises 2.46:

1. (a) 6i (b) −(8 + 6i)/5 (c) 0 (d) 1/2.
2. (a) is continuous whereas (b) is uniformly continuous; (c) and (d) are

discontinuous at the origin.
8. f(z) = sinπz.

18. Use Exercise 12.

Questions 3.2:

3. A half-plane.

5.
1

z + b
�= 1

z
+ b.

6. Rotation and magnification.

Exercises 3.3:

1. (a) v = −3(u − 2) (d) (u − 3)2 + (v − 1)2 = 8.
2. (a) Im w > −1 (b) Im w > 0.
3. The strip between the lines v = u − 3 and v = u − 7.
6. (c) The triangle with vertices −1 + 11i, −13 + 5i, and 2 − 10i.
7. (b) (u − 1

2 )2 + (v + 1)2 = 5
4 .

8. (a) (u − 2
3 )2 + v2 = ( 1

3 )2

(d) (u − 1
2 )2 + v2 < 1

4 .
9. 0 ≤ Re z ≤ 2 maps onto the right half-plane minus the disk |w− 1/4| <

1/4.

Questions 3.27:

3. A linear transformation.
13. Use the fact that lines and circles map onto lines and circles. Review

this question after reading Chapter 11.

15. f(z) =

⎧⎨
⎩

0 for z = ∞
∞ for z = 0
z otherwise.

If we require continuity, the function must be bilinear.

Exercises 3.28:

2. (a) w =
iz − 1
−3z + i

(d) w = −z + 2(1 − i)
z − 2

.

4. (a) Im v ≤ 1
2 (b) u2 + (v − 1

2 )2 ≥ (1
2 )2.

5. (c) (u − 1)2 + (v − 1)2 < 1 (d) u2 + (v + 1)2 > 2.
9. What is the image of the real line under a bilinear map?

11. Choose z2 = ∞ in the previous exercise.
12. Suppose w = (az + b)/(cz + d). If a = d, b = c = 0, then there are

infinitely many fixed points. If (a − d)2 = −4bc, then there is one fixed
point.
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18. For instance, set

T (z) = z + 1, S(z) = z/(z + 1) and U(z) = (z + 1)/z.

Then
T (S(z)) =

2z + 1
z + 1

, S(T (z)) =
z + 1
z + 2

and
T (U(z)) =

2z + 1
z

, U(T (z)) =
z + 2
z + 1

.

19. w = A(iz − z0)/(iz − z0), |A| = 1.
24. We present a direct proof. Clearly the equation of the line L is y = x+1

and the equation of the line passing through 3i and 2 + i is y = −x + 3.
Note that these two lines are perpendicular. Solving these two equations
give 1 + 2i as its point of intersection. Note that

|(1 + 2i) − 3i| = |1 + 2i − (2 + i)| =
√

2.

Thus z1 and z2 are inverses with respect to the given line.
26. (3 + 6i)/5.

Questions 3.29:

1. It doesn’t.
2. Any half-plane whose boundary passes through the origin.
4. When the ray (extended) passes through the origin.

Exercises 3.30:

2. We have f(z) = x2−y2 +2ixy = u+ iv, where u = x2−y2 and v = 2xy.
Note that
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x = 1 ⇒ u = 1 − y2, v = 2y, i.e., u = 1 − (v2/4)
y = 1 ⇒ u = x2 − 1, v = 2x, i.e., u = (v2/4) − 1

x + y = 1 ⇒
{

u = x2 − (1 − x)2 = 2x − 1
v = 2x(1 − x) , i.e., v = (1 − u2)/2.

4. Rewrite the given function as

z

(1 − z)2
=

1
4

(
1 + z

1 − z

)2

− 1
4
.

7. Set w1 = T1(z) = zn and w2 = T2(z) = eiα(z − z0)/(z − z0), where
α ∈ R and z0 with Im z0 > 0 are fixed (choose for example, α = 0 and
z = i). Then the composed mapping w = (T2 ◦ T1)(z) gives a mapping
with the desired property.

8. (a) The upper half-plane. (b) The plane minus the positive real axis.
9. The unit disk n times.

Questions 4.7:

2. Infinite strips of width 2π.
4. Unbounded along any ray other than one along the real axis.
8. No, as will be shown in Chapter 8.

11. ez is unbounded along every ray in the right half-plane, while ez + z is
unbounded along every ray.

14. tan z = i ⇐⇒ eiz − e−iz = i2(eiz + e−iz) ⇐⇒ eiz = 0.

Exercises 4.8:

1. (a) 2kπ/3i (b) ±(1 + i)
√

kπ (k ≥ 0)
(c) ln |2kπ| + i(π/2 + nπ).

6. (a) ex/(x2+y2)

(
cos

y

x2 + y2
− i sin

y

x2 + y2

)
(b) |e1/z| ≤ e1/ε.

8. (c) | sin z|2 + | cos z|2 ≥ | sin2 z + cos2 z| = 1.

Questions 4.10:

1. The inverse of the exponential function.
2. Yes.
4. The further in the right half-plane, the larger is the area of its image.
9. exp(f(z)).

11. At all points except z = π/2+2kπ. This will be better understood after
Chapter 10.

Exercises 4.11:

1. (a) The line segment from [(1 + i)/
√

2]e−5 to [(1 + i)/
√

2]e5.
(c) The part of the annulus in the upper half-plane bounded by the
semicircles |w| = 1/e2 and |w| = e.
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2. (a) The region |w| ≤ 1, Im w ≥ 0.
(b) The region |w| ≤ 1, Re w ≤ 0.
(c) The region |w| ≥ 1, Re w ≥ 0.

Questions 4.14:

1. The imaginary part of the logarithm is the argument.
2. This is perfectly consistent, although sometimes inconvenient.
7. Only if −π < Arg z1 − Arg z2 ≤ π.

Exercises 4.15:

1. (c) 1
2 ln(x2 + y2) + i tan−1(y/x).

Questions 4.22:

1. No, because 2kπ �= 0.
3. (a + bi)c+di is real if d ln |a + bi| + c arg(b/a) = kπ, k an integer.
4. It assumes at most mn distinct values.
6. Because the function is not single-valued in any neighborhood of the

origin. The function is also discontinuous at the origin.
8. One is an n-valued function, and the other is an n-to-one mapping.
9. Only when m and n are relatively prime. For instance, (z2)1/2 has two

vales, whereas (z1/2)2 has only one.

Exercises 4.23:

1. (b) πeei(π/2+2kπ)e (c) 1
2 .

8. (c) 1
2 tan−1(2/ − 1) + (i/4) ln 5.

Questions 5.13:

2. Because only one “bad” path need be found.
7. The derivative of

f(z) =
{

x2 sin 1/x if x �= 0
0 if x = 0,

exists but is not continuous at the origin.
8. Usually when we are involved with expressions like x2 + y2.

11. If f ′(z) exists, then f(z) is constant.
12. Nowhere when f(z) = |z|. Nowhere except at z = 0 when f(z) = |z|2.

Exercises 5.14:

1. (c) and (d).
2. (a), (b), (c), (e), (f) differentiable at the origin, (d) differentiable every-

where.

7. (a)
(x2 + y2)n/2

y
(b) y/

√
x.
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Questions 5.28:

2. Local versus global behavior.
4. A function that is differentiable everywhere in the plane.

11. If f ′(z)/g′(z) is continuous at z0.
12. No. 1/z, 0 < |z| < 1.
14. Because the argument is not defined.
20. (Arg z)2 is continuous on C \{0} and (Arg z)3 is discontinuous on the

negative real axis.
21. No.

Exercises 5.29:

2. (a) a = b, c = −1 (b) a = b = c/2 (c) a = 1, b = 2kπ
(d) a = b = 0.

8. Let f = u + iv be entire. Then (see also Example 5.25), as

f ′(z) = ux + ivx ≡ vy − iuy,

it follows that ux = 0 = vy and so, u = φ(y) and v = ψ(x). But then,

f(z) = φ(y) + iψ(x) and f ′(z) = iψ′(x) = −iφ′(y)

which shows that Re f ′(z) = 0 and therefore, f ′(z) is a constant. Hence,
f(z) = az + b for some constants a and b with Re a = 0.

16. (a) 1/3 (b) 0 (c) 2 (d) Does not exist.

Questions 5.40:

1. If a property holds for analytic functions whenever it holds for its real
and imaginary parts.

4. If f(z) is analytic, then |f(z)| is continuous and ln |f(z)| is harmonic
when f(z) �= 0.

5. No. See Chapter 10 for details.

Exercises 5.41:

2. (a) v = ay − bx + c (b) v =
x

x2 + y2
+ c (c) v = 3x2y − y3 + c

(d) v = − ln |z| + c (e) v = ex2−y2
sin 2xy + c.

4. Follow the idea of Example 5.35.
6. We have v(x, y) = (y2 − x2)/2 + k and u + iv = −iz2/2 + ik, where k is

some real constant.

7. a = 3, v = 3xy2 +
y2

2
− x3 − x2

2
+ c.

9. Note that ux = 3ax2 + y2 + 1, uy = 2xy and so

uxx + uyy = 6ax + 2x = 2x(3a + 1) = 0

gives a = −1/3 to make u harmonic in C. As a derivative formula for
f = u + iv is given by f ′(z) = ux(x, y) − iuy(x, y), it follows that
f ′(z) = −x2 + y2 + 1 − 2ixy = −z2 + 1. This gives



Hints for Selected Questions and Exercises 495

f(z) = −(z3/3) + z + c

where c is a constant. Note that harmonic conjugates v are given by

v(x, y) = Im (−z3/3 + z + c) = −(1/3)(3x2y − y3) + y + Im c.

13. uxvx = −uyvy.
14. As Im

(
f2(z)

)
= 2uv and f2(z) is analytic on D, uv is harmonic.

19. (a) − 1√
1 − z2

(b)
1

1 + z2
(c)

1√
z2(z2 − 1)

.

Questions 6.18:

5. If an > 0 and
∑∞

n=1 an converges, then there exists a positive sequence
{bn} such that

∑∞
n=1 bn converges with an/bn → 0.

8. See Exercises 6.19 (8) and 6.19 (9).
10. All sequences have a limit superior, but we have to avoid expressions

like ∞−∞.
12. The conclusion is valid as long as one sequence does not approach ∞

while the other approaches −∞.
13. No. (1/2n)1/n < 1 for every n.

Exercises 6.19:

4. (a) Set an = rn − rn+1, and apply the Cauchy criterion.
(b) Show that an/

√
rn < 2(

√
rn −√

rn+1).

Questions 6.36:

2. The sequence {z + 1/n} is unbounded in the plane and converges uni-
formly.

5. A point is a compact set.

7. Define fn(z) =
{

1/n if z is real,
0 otherwise.

The sequence {fn} converges uniformly to zero in the plane.

8. fn(z) = (−1)n does not converge, although |fn(z)− 1| = 0 for infinitely
many n.

10. fn(z) =
∑n

k=1(z
k/k2) converges uniformly in |z| ≤ 1, but the limit

function is not differentiable at z = 1.

Exercises 6.37:

8. The sequence {z/n} converges uniformly to 0 on |z| ≤ 1, but
∑∞

n=1(z/n)
diverges for z �= 0.

10. (a) Converges uniformly to 0, where defined.
(b) Converges uniformly for Re z ≥ ε > 0 and pointwise for Re z > 0.
(c) Converges uniformly for Re z ≤ 0.
(d) Converges uniformly to 1 for |z| ≤ r < 1 and pointwise to 1 for
|z| < 1; converges uniformly to 0 for |z| ≥ R > 1 and pointwise to 0 for
|z| > 1; converges to 1

2 when z = 1.
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11. (a) Absolutely for |z| < 1 and uniformly for |z| ≤ r < 1.
(b) Absolutely for |z2 + 1| > 1 and uniformly for |z2 + 1| ≥ R > 1.
(c) Absolutely where defined (z �= n), and uniformly on bounded sub-

sets of the plane that exclude disks centered at the integers.
(d) Absolutely for |z| > 1 and uniformly for |z| ≥ R > 1.

Questions 6.57:

1. |z0| ≤ |z1|.
2. An entire function.
6. If

∑∞
n=0 nanzn converges, then

∑∞
n=0 anzn converges. The converse is

false.
7. It is at least 1.
9. fn(z) = z + n does not converge, although f ′

n(z) = 1 converges.
11. In Chapter 8, it will be shown that all analytic functions have power

series representations.

Exercises 6.58:

3. |anzn| ≤ |a0| |z|n for all n.
5. Either

∑∞
n=0 an diverges or the series is a polynomial.

10. (a) |a| (b) 1/|a|, |a| > 1; 1, |a| ≥ 1 (c) 1 (d) 1/e (e) 1; For (f),
because of the presence of factorials, it is more convenient to use ratio
test. Now

1
R

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)2

(2n + 2)(2n + 1)
=

1
4
.

11. (a) 2 (b) 1/
√

3 (c) ∞ (d) 1 (e) 5/3; For (f), we note that

|2nzn2 |1/n = 2|z|n →

⎧⎨
⎩

0 if |z| < 1
2 if |z| = 1
∞ if |z| > 1

and therefore, the series converges for |z| < 1.
12. Let sn =

∑n
i=1 ai, and consider

∑n
i=m aibi =

∑n
i=m(si − si−1)bi.

14. (b) 9 − 2(z + 2) − 3(z + 2)2 + (z + 2)3.
16. Given R−1 = lim supn→∞ |an|1/n = lim supn→∞ |1/an|1/n. It is easy to

see that
lim sup

n→∞
1

|an|1/n
=

1
lim sup |an|1/n

= R

and so the last equation gives R2 = 1.
17. Let f(z) =

∑∞
n=0 cos(nπ/3)zn. We first compute

an = cos(nπ/3) =

⎧⎨
⎩

(−1)k if n = 3k
(−1)k/2 if n = 3k + 1

(−1)k+1/2 if n = 3k + 2
, k ∈ N0,
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so that

f(z) = 1 +
(

z

2
− z2

2
− z3

)
−

(
z4

2
− z5

2
− z6

)
+ · · ·

= 1 +
(

z

2
− z2

2
− z3

)
(1 − z3 + z6 − · · · )

= 1 +
(

z

2
− z2

2
− z3

)
1

1 + z3

=
(1 + z)(1 − z/2)

1 + z3

=
1 − z/2

1 − z + z2
.

Questions 6.66:

2. At all points where the denominator is nonzero. This follows from the
fact (proved in Chapter 8) that an analytic function admits a power
series expansion.

4. 1/(1−z) is analytic for z = 2. A function cannot be analytic everywhere
on |z| = R, which is proved in Chapter 13.

8. The radius of convergence of the Taylor series about a point is the
distance between that point and the nearest zero of the denominator.

Exercises 6.67:

1. (a) Inequality holds when

an =
{

1 if n is odd
1/2n if n is even ,

and bn =
{

1/2n if n is odd
1 if n is even .

2. (a) R (b) R (c) ∞ (d) 0.
4. If an ≡ 1, then R = 1 for both series. If an = 2n, then R = 2−1/k for∑∞

n=0 anzkn and R = 1 for
∑∞

n=0 anzn2
.

5. (b) lim sup
n→∞

∣∣nk/n!
∣∣1/n

= 0.

6. (a) 5
2 (b) 13

12 (c) 5 − 5i.
7. Note that radius of convergence of

∑∞
n=1

zn

n2 and
∑∞

n=1(−3)nzn are 1
and 1/3, respectively. According to Theorem 6.62, the radius of conver-
gence R of the sum of these two series must be at least 1/3. Is R = 1/3?

11. Substituting z = 0 in the functional equation gives

f(0)[1 − f(0)] = 0, i.e., either f(0) = 0 or f(0) = 1.

If f(0) = 0, then, by differentiating the functional equation, we find that
f ′(2z) = f(z)f ′(z) which gives f ′(0) = 0. Continuing this process, we
get f (k)(0) = 0 for all k ∈ N. Thus, f(z) = 0 on Δr. If f(0) = 1, then
by differentiating the last equation we have

2f ′′(2z) = (f ′(z))2 + f(z)f ′′(z)
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so that f ′′(0) = (f ′(0))2. In this way, we conclude that

f(z) =
∞∑

n=0

(f ′(0))n

n!
zn = exp(f ′(0)z).

Questions 7.12:

2. No, because the initial and terminal points coincide.
4. The complement of a simply connected domain is connected.
7. The plane minus the integers.

11. It is the continuous image of a compact and connected set.

Exercises 7.13:

1. A circle if a = b and an ellipse if a �= b.
3. As R → ∞, z(t) becomes a circle centered at the origin with radius 1.
5. (a) z(t) = t + i(1 − 2t) (0 ≤ t ≤ 1)

(d) z(t) = 1 + 2 cos t + i2 sin t (−2π/3 ≤ t ≤ 2π/3).
6. z(t) = t + i(2t2 − 3) (−1 ≤ t ≤ 2).
7. (b) 4r2 cos2 θ + r2 sin2 θ = 1.
8. (a) 2πi (b) 4πi (e) −30 + 25πi.
9. (b) 2πi (d) 2π + 4πi.

Questions 7.28:

3. A finite number of discontinuities will not prove significant.
4. Yes, because a contour is compact.
5. As f is continuous at the origin, given ε > 0 there exists a δ′ > 0 such

that |f(δeiθ) − f(0)| = |f(δeiθ)| < ε for δ < min{δ′, r}, θ ∈ [0, 2π]. So,∣∣∣∣
∫ 2π

0

f(δeiθ) dθ

∣∣∣∣ ≤
∫ 2π

0

∣∣f(δeiθ)
∣∣ dθ < 2πε → 0 as ε → 0.

Similarly,∣∣∣∣∣
∫
|z|=δ

f(z)
z

dz

∣∣∣∣∣ =
∣∣∣∣i
∫ 2π

0

f(δeiθ) dθ

∣∣∣∣ → 0 as δ → 0.

7. The parametrization is easier to deal with.

Exercises 7.29:

4. (a) 12π (b)
√

2(eπ − e−π).

5. (b)
∫

C

x dz =
1 − i

2
,

∫
C

y dz = −1 − i

2
,

∫
C

z dz = 1,

(c)
∫

C

x dz = πi,
∫

C

y dz = −π,
∫

C

z dz = 2πi.
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6. Along the line segment from the origin to 1 + i,

∫
C

z dz = i,
∫

C

|z| dz =
1 + i√

2
,

∫
C

z|dz| =
1 − i√

2
,

∫
C

|z| |dz| = 1;∫
|z|=1

z dz = 0 =
∫
|z|=1

|z| dz =
∫
|z|=1

z|dz|,
∫
|z|=1

|z| |dz| = 2π.

9. 2πi.
10. (a) e2+2i − 1 (b) e1−i − e−(1−i) + 2(1 − i) (c)

i

2
(e1−i − e−1+i)

(e) (−7 + 5i)/3.
11. 4

3 .
12. We have∫

C

z|z| dz =
∫ R

−R

x|x| dx +
∫ π

0

(Reiθ)(R)iReiθ dθ = iR3

∫ π

0

e2iθ dθ = 0.

Questions 7.37:

2. In the use of the Fundamental Theorem of Calculus.
5. See Question 7.37 (2).
7. It need not be analytic:

∫
|z|=1

(1/z2) dz = 0.
9. See Section 9.3.

Exercises 7.38:

1. (a) 16/3 (b) Traversed in the positive sense −5/3. (c) 0 (d) πr2/4
(e) 128/5.

6. Regardless of the contour chosen: (a) 0 (b) i(1 + 1/e).

Questions 7.55:

1. Not necessarily, because |f(z)| is not analytic.

3.
∫
|z|=1

dz

z
�= 0.

7. In order to apply the Cauchy-Riemann equations.
10. Any integral multiple of 2πi.
11. If g0(z) is a solution, then so is g0(z) + 2kπi.

Exercises 7.56:

3. f(z) = 1/z2.
5. (a) π (b) −π (c) 0 (d) 0.
6. (a) 2πi (b) 0 (c) 2πi. These solutions will be easy to verify after

reading Section 8.1.
9. As Re z = (z + 1/z)/2 for |z| = 1, we have

I =
∫
|z|=1

(z2 + 1 + 2αz)
f(z)
z2

dz = 2πi(f ′(0) + 2αf(0)).



500 Hints for Selected Questions and Exercises

10. As f(z) = az = ez Log a is an entire function, its primitive is given by

F (z) =
ez Log a

Log a
=

az

Log a
.

Questions 8.23:

4. If they are analytic at the point, they are identical.
6. {zn} does not converge uniformly on |z| < 1.
8. They need not be analytic.

10.
∫
|z|=1

|z|2 dz = 0, but |z|2 is not analytic. Morera’s theorem is not ap-
plicable because the integral is not zero along every contour.

12. f(z) =
∞∑

n=0

zn =
1

1 − z
(|z| < 1), f ′(2) = 1 �=

∞∑
n=1

nzn−1. Here, 1/(1 −

z) is not defined by
∑∞

n=0 zn at z = 2. See Chapter 13.

Exercises 8.24:

3. (a) 2πie2 (b) 2πie4 (c) 8πie4 (d) 2πie2(sin 2+cos 2) (e) 2πe−2 sin 2
(f) 144πi.

4. (a) 0 (b) 0 (c) 0 (d) 12πi.
6. As |z| = 1, for the first integral, we may rewrite Re z = (z +1/z)/2. For

the second and third integrals, we write z − 1 = eiθ so that

z = 1 + e−iθ = 1 +
1

z − 1
=

z

z − 1

and

Im z = Im (z − 1) =
z − z

2i
=

1
2i

(
z2 − 2z

z − 1

)
.

Now, use the Cauchy integral formula.

7. (a)
2π

17
(c)

π

17
− 4πi

17
(e)

2π

17
− 8πi

17
8. Use the Cauchy theorem for multiply connected domains and the

Cauchy integral formula.
9. (a) z + z2 + 1

3z3 − 1
30z5

(c) 1 + z + 3
2z2 + 7

6z3 + 25
24z4 + 27

40z5.
11. (a) 1

2 (b) 1 (c) 1 (d) 0.
16. Express as eα log(1−z) and expand.

Questions 8.55:

2. No. Indeed if f(z) =
∑∞

n=0 anzn with |an| ≥ n!, then

1
R

= lim sup
n→∞

|an|1/n ≥ lim sup
n→∞

(n!)1/n = ∞, i.e., R = 0.

5. ez is bounded for Re z ≤ 0.
6. No, as will be shown in Chapter 11.
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12. If f(z) �= 0 in C, then φ(z) = 1/f(z) is entire and |φ(z)| → 0 as
|z| → ∞. So, φ is entire and bounded on C. Consequently, φ and hence
f is constant, a contradiction. Thus, f has a zero in C.

13. No, because sin πz and 0 agree at the integers.
17. Consider φ(z) = e−(a−ib)f(z). Then |φ(z)| = e−(au+bv) ≤ e−c = M .

Exercises 8.56:

11. Set h(z) = f(z)/g(z) and show that h′(z) = 0.
12. For instance, f(z) = sin(1/(z − 1)), sin((1 + z)/(1 − z)).
15. Define g(z) = f(z)−f(z). Then g is entire and g(an) = 0 for all n ≥ 1. As

every bounded sequence of real numbers has a convergent subsequence,
it follows that g(z) = 0 in C, by the identity theorem. So, f(z) is real
on the real axis. As f(x) is real for x ∈ R, we can apply the mean value
theorem of calculus on the interval [a2n+1, a2n]. Thus, for each n, there
exists a cn such that

a2n+1 ≤ cn ≤ a2n and f ′(cn) = 0.

As an → 0, we see that cn → 0. Consequently, f ′(z) = 0 in C by the
identity theorem.

Questions 8.72:

2. f(z) = zn on |z| = r.
3. Not necessarily. If f(z) = ez, then |ereiθ1 | < |ez| for some |z| < r

whenever θ1 �= 2kπ.
4. ez on {z : Re z < 0} ∪ {0} attains a maximum at z = 0.

Exercises 8.73:

3. For each n ∈ N, let fn(z) = znf(z), and Fn(z) = fn(z)fn(z). Then, Fn

is analytic and for ε > 0 there exists an n such that |Fn(ζ)| < ε for all
ζ ∈ C. By the Maximum modulus principle, this inequality yields that
|x2nf(x)| ≤ ε for x ∈ (0, 1).

4. (a) Max at z = r, min z = −r.
(b) Max and min everywhere.
(c) Max at z = r and min z = ir.
(d) Max at z = −r, min z = r.

6. Observe that |ez2−iz| = eRe (z2−iz), and then maximize the quantity
Re {z2 − iz}.

9. Use Theorem 8.38 and the fact that |eP (z)| is continuous.
12. Use Schwarz’s lemma.
13. Suppose that such an f exists. Define

F (z) = φ3/4 ◦ f ◦ φ1/2(z), φa(z) =
a − z

1 − az
.

Then F satisfies the hypothesis of the Schwarz lemma. But a compu-
tation gives that F ′(0) = 32/21, which is a contradiction. Thus, we see
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that no such f can exist. See also Example 8.70. Define F (z) = f(z/3).
Then, F is analytic for |z| ≤ 1 and |F (z)| ≤ 1 for |z| ≤ 1 so that F (z)
has zeros at ak = wk/3, k = 0, 1, . . . , n−1. Therefore, F (z) is Blaschke
product with zeros at ak and so,

|F (0)| =
n−1∏
k=0

∣∣∣wk

3

∣∣∣ =
1
3n

.

Questions 9.8:

2. No.
∑∞

n=1(z
n/n2) converges uniformly on the annulus 1

2 ≤ |z| ≤ 1, but
is not analytic on |z| = 1.

4.
∑∞

n=1(1/nz) is analytic in a half-plane.
5. Only for constant functions.
7. If f(z) is analytic in an annulus, then the identity is valid in that annu-

lus.

Exercises 9.9:

1. Use partial fractions.

4.
∞∑

n=0

z2n

n!
+

∞∑
n=0

1
z2nn!

.

5. (iii)
1

a − b

∞∑
n=0

an − bn

zn+1
(iv)

∞∑
n=0

(−1)n (z − a)n−1

(a − b)n+1
.

6. We note that

f(z) =
1
z

[
1

z − b
− 1

z − a

]
1

b − a

=
[(

1
z − b

− 1
z

)
1
b
−

(
1

z − a
− 1

z

)
1
a

]
1

b − a

=
1

ab(b − a)

[
b − a

z
− b

z − a
+

a

z − b

]

and the rest of the calculation is routine as in Example 9.7.
7. The calculation is routine once we write f(z) as

f(z) = 1 +
1

z + 1
+

3
4 + z

.

8. (a) − i

4(z − i)
(d)

1
z3

− 1
6z

.

9. (a)
∞∑

k=0

zn

k!zk
(b)

∞∑
n=0

an

zn
, where an =

n∑
k=1

(
n − 1
k − 1

)
1
k!

.

11.
4
z4

+
4
z3

+
8

3z2
+

4
3z

.
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Questions 9.21:

1. 1/ sin(1/z) has infinitely many singularities in the compact set |z| ≤ 1.
All but one, z = 0, are isolated.

2. A counterexample will be constructed in Chapter 12.
5. ez − (7 − 2i).
7. Only constant functions.
9. No, by definition.

Exercises 9.22:

4. (b) Simple poles at z = 1/(2k + 1)πi, nonisolated essential singularity
at z = 0.
(e) Isolated essential singularities at z = 0 and z = ∞.
(g) Branch point at z = 1 and simple pole at z = −1.

6. (a) Removable (b) Simple pole.
(c) (d), (f) are all isolated essential singularities.
(e) is a nonisolated essential singularity.

7. f(z) =
z − z0

(z − z0)(z − z1)k
e1/(z−z2).

13. Set f(z) = A/(1 − z/z0) + F (z), where A is a constant and F (z) is
analytic for |z| < R.

14. Set (1 + z)1/z = e(1/z) log(1+z) = e(1/z)[ Log (1+z)+2kπi].

Questions 9.36:

3. Morera’s theorem cannot be applied because sin(1/z2) is not continuous
at z = 0.

5. None. The residue theorem is just a convenient form of Cauchy’s theo-
rem.

8. Because 1 + x2n+1 has a singularity on the real axis.

Exercises 9.37:

1. (a) At z = π/2 + kπ, the residue is (−1)k+1.
(b) At z = 1, the residue is −2; at z = 2, the residue is 2.

(c) At z = 0, the residue is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n is even,

− 1
(n + 1)!

if n = 4k + 1,

1
(n + 1)!

if n = 4k + 3.

3. As f ′(a) �= 0, f(z)−f(a) �= 0 in a deleted neighborhood of a. Therefore,

lim
z→a

(z − a)
1

f(z) − f(a)
=

1
f ′(a)

�= 0

and the conclusion is a consequence of the Residue theorem.
5. (a) 0 (b) 2πi(1 + 2e + 2e4).
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6. We may rewrite the given integral as

I =
1

2πi

∫
|z|=2

f(z) dz, f(z) =
zn

(z − eiφ)(z − e−iφ)
,

The poles of f(z) are at z = eiφ, e−iφ and both lie inside |z| = 2. It
follows easily that

I = Res [f(z); eiφ] + Res [f(z); e−iφ] =
sinnφ

sinφ
.

7. (a) (2 − 4n)i (b) (2 + 4n)i.
9. Note that f(z) = 0 implies that z ∈ {∗√−3 + 2i,∗√−3 − 2i}, where

∗√−3 + 2i = {±a} and ∗√−3 − 2i = {±a},

where

a =

√
−3 +

√
13

2
+ i

√
3 +

√
13

2
.

The poles lying in the upper half-plane are a and b := −a. They are
simple poles. Therefore we find that

Res
[

z2

f(z)
; a

]
=

a2

f ′(a)
=

a

4(a2 + 3)
= − ia

8

as a2 = −3 + 2i. Similarly we have

Res
[

z2

f(z)
; b
]

=
b

4(b2 + 3)
=

b

4[(−3 − 2i) + 3]
=

ib

8
.

10. Consider the polynomial equation f(z) = a0 + a1z + · · · + zn. Since
|f(z)| → ∞ as z → ∞, for sufficiently large R, we have |f(z)| > 0 for
|z| ≥ R. If we let F (z) = f ′(z)/f(z) and C = {z : |z| = R}, described
in the positive direction, then

1
2πi

∫
C

f ′(z)
f(z)

dz =
1

2πi

∫
C

F (z) dz = −Res [F (z);∞]

= Res
[
F (1/z)

z2
; 0

]

= lim
z→0

z

[
f ′(1/z)

z2f(1/z)

]
= n.

12. Keep c fixed and let R → ∞.
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Questions 9.58:

1. e1/z, z �= 0.
6. |z| maps the plane onto the ray Re u ≥ 0, v = 0, which is not open.
7. ez maps the plane onto the punctured plane, which is not closed.
8. Consider the exponential function f(z) = ez.

Exercises 9.59:

3. The sum of the roots of P (z).
4. If f(z) = a0 + a1z + · · · + an−1z

n−1 + zn, n ≥ 1 and R is chosen large
enough so that |f(z)| ≥ 1 for all |z| ≥ R then, for |z| ≥ R, we have

f ′(z)
f(z)

=
nzn−1 + · · ·

zn + · · · =
n

z
+ terms in

1
zk

, k ≥ 2.

Thus,
1

2πi

∫
|z|=R

f ′(z)
f(z)

dz =
n

2πi

∫
|z|=R

dz

z
= n.

Since f has no poles in C, the fundamental theorem of algebra follows.
10. For |z| = 1, z = x + iy, | − azn| = a > e > ex = |ez|.
12. If p(z) = z3 + iz + 1, then

p(x) = 0 =⇒ x3 + 1 = 0 and x = 0

which is not possible. Similarly,

p(iy) = 0 =⇒ 1 − y = 0 and y3 = 0

which is again not possible.
13. For |z| = 1,

|z4 + 1| ≤ |z|4 + 1 = 2 < | − 6z| = 6

and for |z| = 2,

| − 6z + 1| ≤ 6|z| + 1 = 13 < |z|4 = 24.

16. For |z| = 3/2,

|z3 + 1| ≤ |z|3 + 1 = 27/8 + 1 < |z|4 = 81/16

and for |z| = 3/4,

|z|4 = 81/256 ≤ −|z|3 + 1 = −27/64 + 1 ≤ |z3 + 1|.

18. Use Corollary 9.47.
19. Use Hurwitz’s theorem.
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Chapter 10:

Questions 10.15:

5. Not according to Picard’s theorem.

8. u(z) =
{

x + y if |z| < 1,
1 if |z| = 1.

11. Theorem 10.14 generalizes Theorem 8.35 because Re f(z) ≤ |f(z)|, and
reduces to Theorem 10.4 when λ = 0.

14. By the mean value theorem, u(2,−1) = −2.
15. u(z) = ay + b for some constants a and b.
18. As f = u + iv is analytic in D, Im (f2) = 2uv is harmonic. Also u2 is

harmonic on D iff u is constant.
19. No.

Exercises 10.16:

10. u = 1.
11. u = y.
13. Use Cauchy’s integral formula in conjunction with Theorem 10.13.

Questions 10.34:

2. Yes, by finding an upper bound on the entire function using (10.14),
and then applying Theorem 8.35.

3. The proof of uniqueness is easy in the case when F is continuous on
|z| = R. Then u would be harmonic for |z| < R, continuous on |z| = R,
and equal to F on |z| = R. Let u1 be another such function. Then
u − u1 = 0 on |z| = R showing that u = u1 for |z| < R (by Corollary
10.10).

4. In Chapter 11, we shall discuss mappings from the disk to other domains.
This will enable us to solve the Dirichlet problem for other domains.

5. Theorem 10.6 gives the value of the harmonic function at the center of
the circle, whereas Theorem 10.18 gives the value for all points inside.

Exercises 10.35:

6. u(reiθ) =
1
π

tan−1 1 − r2

2r sin θ
(0 ≤ tan−1 t ≤ π).

8. Show that

tan−1 r sin θ

1 + r cos θ
= Im log(1 + z) (z = reiθ).

9. With C = [−R, R] ∪ ΓR, where ΓR is the upper semi-circular contour
from R to −R, we write

f(z) =
1

2πi

∫
C

f(ζ)
(

1
ζ − z

− 1
ζ − z

)
dζ

=
y

π

∫ R

−R

f(t) dt

(t − z)(t − z)
+

y

π

∫
ΓR

f(ζ) dζ

(ζ − z)(ζ − z)
.
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As usual the second integral can be shown to approach zero as R → ∞.
Allowing R → ∞ and noting f(t) = u(t, 0) + iv(t, 0), the result follows
by equating real and imaginary parts.

11. Use (10.22) by noting that

ζ + z

(ζ − z)ζ
=

−1
ζ

+
2

ζ − z
.

12. See Example 10.31.
13. Following the idea of Example 10.31, consider

u(x, y) = Im [aLog (z − 1) + b Log (z + 1) + c]

which is harmonic for Im z > 0. Use the given conditions to find the
constants a, b, c.
Note: More generally, one can solve the following Dirichlet problem:
uxx + uyy = 0 for Im z > 0 subject to the boundary conditions

u(x, 0) = ak for xk < x < xk+1, k = 0, 1, . . . , n,

where x0 = −∞ and xn+1 = ∞.
14. According to the Poisson integral formula, for ζ = eiφ, z = reiθ, the

function

u(z) =
1 − r2

2π

∫ π

0

1
1 − 2r cos(θ − φ) + r2

dφ =
1
2π

∫ π

0

Re
ζ + z

ζ − z
dφ

is harmonic for |z| < 1. An integration shows that

u(z) =
1
π

tan−1

(
1 + r

1 − r
tan

φ − θ

2

)∣∣∣∣
π

0

=
1
π

[
tan−1

(
1 + r

1 − r
tan

π − θ

2

)
− tan−1

(
1 + r

1 − r
tan

−θ

2

)]
.

From the trigonometric identities

tan(α − β) =
tanα − tanβ

1 + tanα tanβ
,

tan
(

π − θ

2

)
= cot

θ

2
,

tan
θ

2
+ cot

θ

2
=

2
sin θ

,

it follows easily that

tanπu(z) = − 1 − r2

2r sin θ
.
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Choosing the determination of the inverse tangent whose values lie in
the interval [0, π], we have

u(reiθ) =
1
π

tan−1

(
− 1 − r2

2r sin θ

)
.

With this determination,

lim
r→1

tan−1

(
− 1 − r2

2r sin θ

)
=

{
π if 0 < θ < π
0 if π < θ < 2π

the desired boundary conditions are satisfied.
15. Use for example, (10.14).

Questions 10.45:

2. In view of Theorem 10.38, the mean-value property does not hold, when-
ever the product of two harmonic functions is not harmonic.

4. Yes, just consider {−un(z)}.
5. Consider |z| < R and Re f(z) > α.
7. We used the fact that

∫ 2π

0
|u(reiθ)| dθ =

∫ 2π

0
u(reiθ) dθ.

Exercises 10.46:

5. Set g(z) = (1 − α)f(z) + α, where Re f(z) > 0. Then apply Theorem
10.42. Why can’t α exceed 1?

7. Set f(z) = (g(z) − α)/(1 − α), and apply Theorem 10.44.

Questions 11.7:

1. By convention the line itself is the tangent line.
2. Only at the point of intersection.
3. Not if the partial derivatives are continuous. See Nehari [N].
9. A one-to-one map is conformal if it is analytic; a conformal map is

locally one-to-one.
12. Only the composition.

Exercises 11.8:

1. f(z) = e3πi(z−z0)/ε.

Questions 11.16:

2. No. Even the family of constant polynomials is not.
3. {zn} is uniformly bounded on |z| < 1, but {nzn−1} is not.
4. No. Let F consist of one function f(z) defined by

f(z) =
{

1 if z �= 1/n,
n if z = 1/n.

This is unbounded in every neighborhood of the origin.
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5. We have assumed that the line segment between any two points lies in
the domain. Thus the proof is valid for any convex domain.

6. A sequence must be countable.

Questions 11.30:

2. f(z) = az, a > 0, maps the annulus r < |z| < R conformally onto the
annulus ar < |w| < aR.

5. No, because the punctured disk is not simply connected.
13. In the construction of the analytic square-root function.
14. In order to ensure that the normal family constructed is nonempty.
19. A desired map is given by φ(z) = eπz/α.
20. A desired map is given by f(z) = (eiz − 1)/(eiz + 1).

Exercises 11.31:

2. Suppose the plane were conformally equivalent to a simply connected
domain D other than itself. Since D is conformally equivalent to a
bounded domain, there would have to be an entire function mapping
onto a bounded domain.

6. f(z) =
r2

r1
z.

Questions 11.43:

2. Theorem 11.32 enables us to prove theorems about S from theorems
about T .

4. Functions of the form z/(1 − eiαz)2 are unbounded.
6. This follows from the fact that if J(f) is a continuous functional defined

on a compact family F , then the problem |J(F )| = max has a solution
for some f ∈ F .

Exercises 11.44:

1. 1/z.
4. Its derivative is 0 at z = −1

2e−iα.
7. Consider f(z1) − f(z0) = (z1 − z0) +

∑∞
n=2 an(zn

1 − zn
0 ).

8. If
∑∞

n=2 n|an| > 1, show that f ′(r0) = 0 for some 0 < r0 < 1.

Questions 12.16:

3. See Example 12.11 and Exercise 12.17 (6).
4. It can approach ∞, 0, or oscillate.

10. The sequence {an} → 0. The series
∑∞

n=0 an does not converge abso-
lutely. It may or may not converge.

13. It is an entire function.

Exercises 12.17:

3. Set −Log (1 − an) = an + a2
n(1/2 + an/3 + · · · ), and apply Theorem

12.5.
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5. Apply Exercise 3.
8. (a) |z| < 1 (b) |z| < 1 (c) Re z > 1.

Questions 12.29:

1. This will be established in the next section.
7. It is necessary that the convergence be absolute. For instance,

∞∏
n=1

(
1 +

(−1)n+1z√
n

)
diverges at z = 1.

8. The series expansion can be determined from the product expansion,
but the converse is not true.

Exercises 12.30:

1. For example,
∏∞

n=1

(
1 − 1

n(R+z)

)
e1/(R+z)n.

2.
∞∏

n=2

(
1 − z

lnn

)
e(z/ ln n)+(1/2)(z/ ln n)2+ ···+(1/n)(z/ ln n)n

+ · · · .

3. (b) f(z) =
∞∏

n=1

(1 − z/n)nez2/2n.

4. (a) Use the product expansion for sinπz. and note that the value is
(eπ − e−π)/(2π).

5. (b) g(z) = z Log (−2i).
11. Use the identity cos z = (sin 2z)/(2 sin z).
13. Using the series expansion of e−z/n, it follows that(

1 +
z

a + n

)
e−z/n =

∞∑
k=0

(−1)k n(1 − k) + a

(n + a)k!nk
zk := 1 + an(z).

We observe that
∑∞

k=0 |an(z)| converges for all z, because

lim
n→∞

∣∣∣∣an(z)
1/n2

∣∣∣∣ = |az|.

Thus, the given product represents an entire function.

14.
9
8

eπ2
+ e−π2 − (eπ2/3 + e−π2/3)

π4
.

15. (b) First set z = 1
2 and then z = 1

4 . Now divide the latter expression by
the former.
(c) Same as above, with z = 1

3 and z = 1
6 .

16. Logarithmic differentiation of Γ (z) defined by (12.19) gives

Γ ′(z)
Γ (z)

= −1
z
− γ + z

∞∑
n=1

1
n(z + n)

= −1
z
− γ −

∞∑
n=1

(
1

z + n
− 1

n

)
,

for z ∈ C \{0,−1,−2, . . . }. Another differentiation yields the formula.
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18. Use the identity ez − 1 = 2iez/2 sin(z/2i).

Questions 12.39:

2. They are meromorphic.
5. In order to obtain a Maclaurin expansion.
6. No, since the entire function g(z) constructed in the proof of Theorem

13.8 is not unique.

Exercises 12.40:

1. f(z) =
∞∑

n=1

1
(z − n)n

.

2.
i

2
e−iz.

8. Differentiation of the partial fraction decomposition of π cot(πz) gives
the desired result.

10. Take logarithmic derivatives of both sides in the identity proved in Ex-
ercise 12.30 (18).

11. Define Pn(z) =
∏n

k=1

(
1 + h2k−1ez

) (
1 + h2k−1e−z

)
and

Qn(z) =
n∏

k=1

(
1 + h2k−1ez+2 log h

) (
1 + h2k−1e−(z+2 log h)

)
.

Then

Qn(z)
Pn(z)

=
∏n

k=1

(
1 + h2k+1ez

) (
1 + h2k−3e−z

)∏n
k=1 (1 + h2k−1ez) (1 + h2k−1e−z)

=
1 + h2n+1ez

1 + hez

1 + h−1e−z

1 + h2n−1e−z
→ 1 + h−1e−z

1 + hez
=

1
hez

as n → ∞ which confirms the truth of the functional equation.

Questions 13.11:

1. Only if D0 ∩ D1 = ∅.
2. sin

1
1 − zn

= 1 when zn = 1 − 1
nπ

.

8. When their intersection is nonempty.
10. It can be shown that if

f(z) =
∞∑

n=1

ank
znk with nk+1 > (1 + ε)nk (ε > 0),

then the circle of convergence of the series is a natural boundary of the
function.

Exercises 13.12:

1. f(z) =
1∏n

k=1(z − eiθk)
.
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2. Write

1
1 − z

=
1

1 + p − (z + p)
=

∞∑
n=0

(z + p)n

(1 + p)n+1
, |z + p| < 1 + p,

and set, for example,

fp+1(z) =
∞∑

n=0

(z + p)n

(1 + p)n+1
with Dp+1 = {z : |z + p| < 1}

where p = 0, 1, 2, . . . .
7. Expand g(z) = f(z)/(1− z) in a series, and show that (1− z)g(z) → ∞

as z → 1 through real values.

8. Set f(z) =
α1

z − eiθ1
+

α2

z − eiθ2
+ · · · +

αk

z − eiθk
+

∞∑
n=0

bnzn, where∑∞
n=0 bnzn is analytic for |z| ≤ 1.

10. Apply Theorem 13.8 for f(−z).

Questions 13.20:

1. As e−t > e−1 for all 0 < δ ≤ t ≤ 1,∫ 1

δ

tx−1e−t dt >
1
e

∫ 1

δ

tx−1 dt =
1
e

(
1 − δx

x

)

which approaches ∞ as x → 0+, for each δ > 0.
8. We need the uniform convergence of the sequence {(1 − t/n)n}. This

sequence does not converge uniformly on the line.
10. The series

∑∞
n=1 anzn is analytic in a disk and converges uniformly

on compact subsets of the disk; it can be shown that
∑∞

n=1(an/nz) is
analytic in a half-plane and converges uniformly on compact subsets of
the half-plane.

11. Entire.

Exercises 13.21:

1. First separate the product for Γ (2z) into even and odd terms:

1
Γ (2z)

= 2ze2γz
∞∏

k=1

(
1 +

z

k

)
e−z/k

∞∏
k=0

(
1 +

z

k + 1/2

)
e−z/(k+1/2).

Deduce that Γ (2z)/[Γ (z)Γ (z+1/2)] has the form aebz. Finally, evaluate
a and b by setting z = 1/2 and z = 1. One can also use (13.7) to prove
this formula.

3. On the line Re s = 2, show that Re ζ(s) > 1 −∑∞
n=2 1/n2.

6. Use the identities Γ (z)Γ (1− z) = π/ sin(πz) and sin 2θ = 2 sin θ cos θ in
(13.32).
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7. By (13.18), we have

1
n1/4

=
1

Γ (1/4)

∫ ∞

0

t(1/4)−1e−nt dt

so that
∞∑

n=1

zn

n1/4
=

1
Γ (1/4)

∫ ∞

0

t−3/4
∞∑

n=1

(e−tz)n dt =
1

Γ (1/4)

∫ ∞

0

z

t3/4(et − z)
dt.

The integral on the right defines an analytic function outside of the
interval [1,∞).



10

Harmonic Functions

In Chapter 5, we saw that if an analytic function has a continuous second
derivative, then the real (or imaginary) part of the function is harmonic. In
Chapter 8, it was shown that all analytic functions are infinitely differentiable
and in particular, have continuous second derivatives. Thus, the real part of
an analytic function is always harmonic.

In this chapter, we examine the extent to which the converse is true. In
simply connected domains, we show that every harmonic function is the real
part of some analytic function. This result enables us to prove several theorems
for harmonic functions that are analogous to theorems for analytic functions.
In particular, an analog to Cauchy’s integral formula, known as Poisson’s
integral formula, gives a method for determining the values of a harmonic
function inside a disk from the behavior at its boundary points.

10.1 Comparison with Analytic Functions

Recall that a continuous real-valued function u(x, y), defined and single-valued
in a domain D, is said to be harmonic in D if it has continuous first and second
partial derivatives that satisfy Laplace’s equation

uxx + uyy = 0.

In Section 5.3, we illustrated how the Cauchy–Riemann equations might be
used to construct a function v(x, y) conjugate to a given harmonic function
u(x, y); that is, a function v(x, y) was found for which f(z) = u(x, y) +
iv(x, y) = u(z) + iv(z) was analytic. The method entailed finding all func-
tions v(z) satisfying the two conditions

ux = vy, uy = −vx.

This method was successful when the partial integration
∫

vy dy could explic-
itly be solved. We now give general conditions for the existence of an analytic
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function whose real part is a prescribed harmonic function. First note that in
view of the Cauchy–Riemann equations, the derivative of any analytic func-
tion f(z) = u(z) + iv(z) may be expressed as

f ′(z) = ux(z) − iuy(z).

Hence we can find f (by integration) directly from u. The details follow.

Theorem 10.1. If u is harmonic on a simply connected domain D, then there
exists an analytic function on D whose real part equals u.

Proof. Set g(z) = ux(z) − iuy(z) := U(z) + iV (z), z ∈ D. Then by Laplace’s
equation,

Ux − Vy = uxx − (−uyy) = 0. (10.1)

Since the mixed partial derivatives of u(z) are continuous in D,

Uy + Vx = (ux)y + (−uy)x = 0. (10.2)

But (10.1) and (10.2) are the Cauchy–Riemann equations for g = U + iV .
Noting that Ux, Uy, Vx, Vy are all continuous, we may apply Theorem 5.17 to
establish the analyticity of g(z) in D.

Next choose any point z0 in D, and set

F (z) =
∫ z

z0

g(ζ) dζ.

Then, by Corollary 8.15, F (z) is analytic in D with

F ′(z) = g(z) = ux(z) − iuy(z).

Observe that the derivative of F (z) may also be expressed as

F ′(z) =
∂

∂x
Re F (z) − i

∂

∂y
Re F (z).

Thus u(z) and ReF (z) have the same first partial derivatives in D, so that

Re F (z) = u(z) + c (c a real constant).

Hence, the function

f(z) = F (z) − c =
∫ z

z0

(ux(ζ) − iuy(ζ)) dζ − c

is analytic in D with Re f(z) = u(z).

Corollary 10.2. If u is harmonic on a simply connected domain D, then
there exists an analytic function on D whose imaginary part equals u.
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Proof. By Theorem 10.1, there exists an analytic function h(z) such that
Re h(z) = u(z). But then f(z) = ih(z) is analytic with Im f(z) = Reh(z) =
u(z).

Example 10.3. Let u(x, y) = sinx cosh y+cos x sinh y+x2−y2 +2xy. It can
be easily seen that u is harmonic in C. Following the proof of Theorem 10.1,

f ′(z) = ux − iuy = cos x cosh y − sin x sinh y + 2x + 2y

−i (sinx sinh y + cos x cosh y − 2y + 2x).

As cos(iy) = cosh y and −i sin(iy) = sinh y, we can simplify the last equation
and obtain

f ′(z) = (1 − i)(cos z + 2z).

Thus, f(z) = (1 − i)(sin z + z2) + c. •
The requirement in Theorem 10.1 that the domain be simply connected is

essential. For example, the function

u(z) = u(x, y) = ln
√

x2 + y2 = ln |z|

is harmonic in the punctured plane C \{0}. Each point in C \{0} has a neigh-
borhood where log z has a single-valued analytic branch. In other words, we
say that u(z) is locally the real part of an analytic function as guaranteed
by Theorem 10.1. Therefore, u(z) = ln |z|, being the real part of an analytic
function, is harmonic in such neighborhoods. We also know that the principal
logarithm Log z defined by

Log z = ln |z| + iArg z

is analytic in the cut plane D = C \(−∞, 0]. Now if some function

f(z) = ln |z| + iv(z)

were analytic throughout the punctured plane C \{0}, then g defined by

g(z) = f(z) − Log z

would be analytic in the slit plane D = C \(−∞, 0]. Since g(z) is purely
imaginary in D, an application of the Cauchy–Riemann equations shows that
g(z) must be constant in D. Thus, any function analytic in D whose real part
is ln |z| must be of the form

u(z) + iv(z) = Log z + ic,

where c is a real constant. It follows that v(z) = Arg z + c. But then

lim
y→0
y>0

v(−1 + iy) = lim
y→0
y>0

Arg (−1 + iy) + c = π + c
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and
lim
y→0
y<0

v(−1 + iy) = lim
y→0
y<0

Arg (−1 + iy) + c = −π + c

which means that v is discontinuous at −1, a contradiction. An argument
similar to this shows that v is not continuous at all points in the negative
real axis (−∞, 0]. Thus, there is no hope for defining an analytic function in
C \{0} whose real part is u(z) = ln |z|. Hence, a harmonic function need not
have an analytic completion in a multiply connected domain.

In view of Theorem 10.1, we may now modify some of the theorems in
Chapter 8 to obtain harmonic analogs. Our next theorem is the harmonic
analog of Liouville’s theorem.

Theorem 10.4. A function harmonic and bounded in C must be a constant.

Proof. Suppose u(z) is harmonic and bounded in the plane. Theorem 10.1
guarantees the existence of an entire function f(z) whose real part is u(z).
But then

g(z) = ef(z)

is an entire function too. Since |g(z)| = eu(z), g(z) is also bounded in the plane.
By Liouville’s theorem g(z), and hence u(z) = ln |g(z)|, must be constant.

Clearly, Theorem 10.4 may be restated in a general form as follows:

Theorem 10.5. If the real or imaginary part of an entire function is bounded
above or below by a real number M , then the function is a constant.

We now prove an analog to Gauss’s mean-value theorem for analytic func-
tions. This is one of the fundamental facts about harmonic functions, called
the mean value property of harmonic functions.

Theorem 10.6. (Mean Value Property) Suppose u(z) is harmonic in a do-
main containing the disk |z − z0| ≤ R. Then

u(z0) =
1
2π

∫ 2π

0

u(z0 + Reiθ) dθ.

Proof. Let f(z) be a function analytic in |z− z0| ≤ R whose real part is u(z).
By Gauss’s mean-value theorem,

f(z0) =
1
2π

∫ 2π

0

f(z0 + Reiθ) dθ.

The result follows upon taking real parts of both sides.

The right-hand side of the last formula gives in particular that the mean
(or average) value u on the circle |z − z0| = R is simply the value of u at the
center of the circle |z − z0| = R. In Section 10.2, we shall consider a similar
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expression for a point of the disk |z − z0| < R other than the center. We
have shown that the behavior of a harmonic function on the boundary of a
closed and bounded region determines the behavior of the harmonic function
throughout the region. For instance, a harmonic function u in the unit disk
|z| < 1 that extends continuously to |z| ≤ 1 is completely determined by
its values on the boundary |z| = 1. The explicit formula for the value of
u for each point in |z| < 1 is given by the Poisson integral formula for a
harmonic function and this is the subject of the discussion in Section 10.2.
Unlike the situation for analytic functions, this result cannot be improved to
an arbitrary sequence of points in the region. For instance, the nonconstant
function u(z) = x is harmonic in the plane with u(z) ≡ 0 on the imaginary
axis. Hence, “analytic” cannot be replaced with “harmonic” in the statement
of Theorem 8.47. That is, even if u(z) is harmonic in a domain D, u(zn) ≡ 0,
and zn → z0 in D, we are not guaranteed that u(z) ≡ 0 in D. Thus, the
analog of the identity principle (see Theorem 8.48) for analytic functions does
not hold for harmonic functions. However, we can salvage the following:

Theorem 10.7. If u(z) is harmonic in a domain D and constant in the neigh-
borhood of some point in D, then u(z) is constant throughout D.

Proof. Let A be the set of all points z0 in D for which u(z) is constant in
some neighborhood of z0. Clearly A is a nonempty open set. To prove that
A = D, it suffices to show that B = D \A is open, for then B would have to
be empty in order for D to be connected.

Suppose B is not open. Then for a point z0 in B and an ε > 0 there is
a point z1 in A such that z1 ∈ N(z0; ε) ⊂ D. Since A is open, we can find
a δ > 0 sufficiently small so that N(z1; δ) ⊂ N(z0; ε) ∩ A. Now construct an
analytic function f(z) such that

Re f(z) = u(z) for all z in N(z0; ε).

Since u(z) is constant in N(z1; δ), f ′(z) = 0 for z in N(z1; δ). An application
of Theorem 8.47 to f ′(z) shows that f ′(z) ≡ 0 throughout N(z0; ε). Then,
by Theorem 5.9, f(z) is constant in N(zo; ε). Hence, u(z) = Re f(z) is also
constant in N(z0; ε), contradicting the assumption that z0 ∈ B.

Example 10.8. Suppose that u(z) is harmonic in a domain D such that the
set {z ∈ D : ux(z) = 0 = uy(z)} has a limit point in D. Then we can easily
show that u(z) is a constant throughout D.

To see this, we define

F (z) = ux(z) − iuy(z), z ∈ D.

Then F is analytic in D and the set {z ∈ D : F (z) = 0} has a limit point
in D. By the uniqueness theorem for analytic functions (see Theorem 8.47),
F (z) ≡ 0 in D and so, ux(z) = 0 = uy(z) on D, i.e., u is a constant.
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Analogous to the maximum and minimum modulus theorems for analytic
functions are the maximum and minimum principles for harmonic functions.
The fact that a harmonic function is locally the real part of an analytic func-
tion produces a number of important results. One of them is the maximum
principle.

Theorem 10.9. (Maximum Principle for Harmonic Functions) A noncon-
stant harmonic function cannot attain a maximum or a minimum in a do-
main.

Note that a harmonic function u(z) attains a maximum at a point z0 if and
only if the harmonic function −u(z) attains a minimum at z0. So the minimum
principle can be derived directly from the maximum principle. This result has
several proofs.

Proof. The maximum modulus theorem for analytic functions is a direct con-
sequence of Gauss’s mean-value theorem and the fact that an analytic function
is continuous. Similarly, we may deduce the maximum principle for harmonic
functions from the mean-value principle for harmonic functions (Theorem
10.6). Indeed, we assume that u(z) attains the maximum at z0 ∈ D. Then,
for each r with 0 < r ≤ dist (z0, D), Theorem 10.6 gives

1
2π

∫ 2π

0

(u(z0) − u(z0 + Reiθ)) dθ = 0.

Since u(z0) − u(z0 + Reiθ) is a continuous function of θ and is nonnegative,
we have

u(z0) = u(z0 + Reiθ) for 0 ≤ θ ≤ 2π.

Thus, u(z) = u(z0) for all z in some neighborhood N(z0; δ). Hence, u(z) =
u(z0) on D (see Theorem 10.7).

For a second proof, we assume that u(z) is a nonconstant function har-
monic in a domain D. Given z0 in D, construct a function f(z) = u(z)+ iv(z)
that is analytic in some neighborhood N(z0; δ) of z0.

We set g(z) = ef(z), and note that |g(z)| = eu(z). If z0 were a maximum
for u(z) in this neighborhood, then z0 would be a maximum for |g(z)|. By
the maximum modulus theorem for analytic functions, the function g must
be constant on N(z0; δ). Therefore, u is constant on N(z0; δ) and hence on
D, which contradicts the assumption that u is nonconstant. The proof is
complete.

Alternatively, one could use the open mapping theorem (Theorem 9.55).
Then it follows that there exists an ε > 0 such that N(f(z0); ε) is contained in
the image of N(z0; δ) under f(z). In particular, for some point z1 ∈ N(z0; δ)
we have Re f(z1) = u(z0) + ε/2. Thus, z0 is not a maximum of u(z) in D.

Observe that min{|f(z)| : z ∈ D} may be attained at an interior point of
D without the analytic function f on D being constant. For example, consider
f(z) = z, for |z| < 1. Then, for |z| ≤ r (r < 1),
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|f(z)| = |z| ≥ 0 = |f(0)|

so that the minimum modulus of f(z) is attained at the interior point z = 0.
However, the maximum of |f(z)| on |z| ≤ r is attained at z = r which is a
boundary point of |z| < r.

The minimum principle for harmonic functions is actually stronger than
the minimum modulus theorem for analytic functions. The hypothesis that the
function be nonzero in the domain is unnecessary for harmonic functions. Of
course, a harmonic function can assume negative values in a domain, whereas
the modulus of an analytic function cannot.

Corollary 10.10. Suppose u(z) is harmonic in a bounded domain D whose
boundary is the closed contour C. If u(z) is continuous in D∪C, with u(z) ≡
K(K a constant) on C, then u(z) ≡ K throughout D.

Proof. Since D ∪ C forms a compact set, u(z) must attain a maximum and
minimum. By Theorem 10.9, the maximum and minimum cannot occur in D.
Thus, they must occur on C. But this means that max u(z) = minu(z) = K.
Hence, u(z) ≡ K throughout D.

The boundedness of D in Corollary 10.10 is essential. The domain
{z : Re z > 0} has the boundary {z : Re z = 0}. The function u(z) = x
is continuous for Re z ≥ 0 with u(z) ≡ 0 on the boundary. But u(z) �= 0 for
Re z > 0.

Corollary 10.11. Suppose u1(z) and u2(z) are harmonic in a bounded do-
main D whose boundary is the closed contour C. If u1(z) and u2(z) are
continuous in D ∪ C, with u1(z) ≡ u2(z) on C, then u1(z) ≡ u2(z) through-
out D.

Proof. Set u(z) = u1(z) − u2(z) and apply Corollary 10.10.

Example 10.12. Suppose that f(z) is an entire function such that f(z) is
real on the unit circle |z| = 1. Then f(z) is constant.

To see this, we set f = u + iv. By assumption, v(z) = 0 on |z| = 1.
By Corollary 10.10, v(z) = 0 for |z| < 1. Hence, f(z) is real for |z| < 1,
i.e., f(|z| < 1) ⊆ R. By the open mapping theorem, f must be constant
for |z| < 1. By the uniqueness theorem for analytic functions, f must be a
constant throughout C.

There is an interesting relationship between the maximum modulus of an
analytic function and the maximum of its real part.

Theorem 10.13. (Borel–Carathéodory) Suppose f(z) is analytic in the
disk |z| ≤ R. Let M(r) = max|z|=r |f(z)| and A(r) = max|z|=r Re f(z). Then
for 0 < r < R,

M(r) ≤ 2r

R − r
A(R) +

R + r

R − r
|f(0)|.
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Proof. If f(z) is constant (say f(z) = k), then the right-hand side is bounded
below by

−2r

R − r
|k| + R + r

R − r
|k| = |k| = M(r),

and the result follows. Hence, we may assume that f(z) is nonconstant.
If f(0) = 0, then by Theorem 10.9, A(R) > A(0) = 0. Since

Re {2A(R) − f(z)} ≥ A(R) > 0

for |z| ≤ R, and

|2A(R) − f(z)|2 ≥ |f(z)|2 + 4A(R)[A(R) − Re f(z)] ≥ |f(z)|2,

the function

g(z) =
f(z)

2A(R) − f(z)

is analytic and |g(z)| ≤ 1 for |z| ≤ R. Then by Schwarz’s lemma,

max
|z|=r

|g(z)| ≤ r/R.

But

|f(z)| =
∣∣∣∣2A(R)g(z)

1 + g(z)

∣∣∣∣ ≤ 2A(R)r/R

1 − r/R
=

2rA(R)
R − r

, (10.3)

and the result follows when f(0) = 0.
Finally, if f(0) �= 0, we apply (10.3) to f(z) − f(0). This leads to

|f(z) − f(0)| ≤ 2r

R − r
max
|z|=r

Re {f(z) − f(0)} ≤ 2r

R − r
(A(R) + |f(0)|).

Thus

|f(z)| ≤ 2r

R − r
(A(R) + |f(0)|) + |f(0)| =

2r

R − r
A(R) +

R + r

R − r
|f(0)|,

and the theorem is proved.

Theorem 10.13 may be used to generalize both Theorem 8.35 and Theorem
10.4 as follows.

Theorem 10.14. Suppose f(z) is an entire function and that Re f(z) ≤ Mrλ

for |z| = r ≥ r0 and for some nonnegative real number λ. Then f(z) is a
polynomial of degree at most [λ].

Proof. Set R = 2r in Theorem 10.13. Then

|f(z)| ≤ 2r

2r − r
A(2r) +

2r + r

2r − r
|f(0)| ≤ 2(2r)λM + 3|f(0)| ≤ M1r

λ,

for M1 sufficiently large. The result now follows from Theorem 8.35.
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Questions 10.15.

1. When can we say ln |f(z)| is harmonic? Where is it harmonic?
2. In the proof of Theorem 10.1, where did we use the fact that the domain

was simply connected?
3. What theorems are valid for disks but not for a simply connected do-

main?
4. Where was continuity of the second partial derivatives for harmonic

functions important?
5. Can a nonconstant function harmonic in the plane omit more than one

real value?
6. Let f = u + iv be analytic in a domain D. Is uxx harmonic in D?
7. Can the maximum modulus theorem for analytic functions be proved

using the maximum principle for harmonic functions?
8. Suppose a function is harmonic in a domain D and continuous on its

boundary C. Must the function be continuous in D ∪ C?
9. For a harmonic function u in a domain D which vanishes in an open

subset of D, does u vanish identically in D?
10. Is there a relationship between the coefficients of an analytic function

and the maximum of its real part?
11. Why is Theorem 10.14 a generalization of Theorem 8.35 and Theorem

10.4?
12. Is every harmonic function an open mapping?
13. Let Ω be a domain and u ∈ C3(Ω). If u is harmonic on Ω, must ux be

harmonic on Ω? Must uy be harmonic on Ω?
Note: Ck(Ω) denotes the set of all functions u whose partial derivatives
of order k all exist and are continuous on Ω.

14. What is the average value of the harmonic function u(x, y) = xy on the
circle (x − 2)2 + (y + 1)2 = 1?

15. Let u(z) be harmonic on the disk |z| < r such that ux(z) = 0 on |z| < r.
What can we conclude about u?

16. Let u be harmonic for |z| < 1. Suppose that {zn}n≥1 is a sequence of
complex numbers not equal to z0 such that zn → z0 in |z| < 1 and
u(zn) = 0 for n ∈ N. Must u be identically zero? If not, under what
additional assumption, do we get u ≡ 0?

17. Must a product of two harmonic functions u and v be harmonic?
18. Suppose that u is harmonic in a domain D and v is its harmonic conju-

gate. Must uv be harmonic on D? Must u2 be harmonic on D?
19. We know that u(z) = ln |z| is harmonic in the annulus D = {z : 1 <

|z| < 2}. Can u(z) have a harmonic conjugate on D?

Exercises 10.16.

1. Show that a function harmonic in a domain must have partial derivatives
of all orders.
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2. If u(z) is nonconstant and harmonic in the plane, show that u(z) comes
arbitrarily close to every real value.

3. Prove the minimum principle directly by each of the three methods in
which the maximum principle was proved.

4. Show that
∫ π

0
ln sin θ dθ = −π ln 2 by applying the mean-value principle

to ln |1 + z| for |z| ≤ r < 1, and then letting r → 1.
5. Suppose f(z) and g(z) are analytic inside and on a simple closed contour

C, with Re f(z) = Re g(z) on C. Show that f(z) = g(z) + iβ inside C,
where β is a real constant.

6. Generalize the previous exercise by showing that the conclusion still
holds if it is only assumed that f(z) and g(z) are analytic inside C and
continuous in the region consisting of C and its interior.

7. If u(z) is harmonic and bounded in the punctured disk 0 < |z−z0| < R,
show that limz→z0 u(z) exists.

8. Suppose u1(z) and u2(z) are harmonic in a simply connected domain
D, with u1(z)u2(z) ≡ 0 in D. Prove that either u1(z) ≡ 0 or u2(z) ≡ 0
in D.

9. It is easy to see that u(z) = Im
(

1+z
1−z

)2

is harmonic in the unit disk

|z| < 1 and limr→1− u(reiθ) = 0 for all θ. Why does this not contradict
the maximum principle for harmonic functions? Is u continuous on |z| =
1?

10. Does there exist a harmonic function in |z| < 1 taking the value 1
everywhere on |z| = 1? Is your solution unique?

11. Does there exist a harmonic function on the strip {z : 0 < Re z < 1}
with u(x, 0) = 0 and u(x, 1) = 1? Is your solution unique?

12. If u(z) = u(x, y) is harmonic in the plane with u(z) ≤ |z|n for every z,
show that u(z) is a polynomial in the two variables x and y.

13. Suppose that f(z) is analytic in the disk |z| ≤ R, and let A(r) =
max|z|=r| Re f(z). Prove that for r < R,

max
|z|=r

|f (n)(z)|
n!

≤ 2n+2R

(R − r)n+1
{A(r) + |f(0)|}.

10.2 Poisson Integral Formula

In this section, we shall attempt to find a harmonic analog to Cauchy’s integral
formula. If f is analytic inside and on a simple closed contour C, then

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ (10.4)

at all points z inside C. We would like to find an expression for Re f at points
inside C in terms of the values of Re f on C. Unfortunately, the expression
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Re
{

1
2πi

∫
C

f(ζ)
ζ − z

dζ

}

simplifies into one involving both Re f and Im f on C.
If, however, the integral of (10.4) is transformed into one of the form∫ b

a
φ(t) dt, where φ(t) is a complex-valued function of a real variable t, then

Re
∫ b

a

φ(t) dt =
∫ b

a

Re φ(t) dt.

Recall that we performed this kind of transformation when proving the mean-
value principle for harmonic functions. This enabled us to determine the value
of a harmonic function at the center of a circle based on its values on the cir-
cumference. By (10.4), we have the so-called mean value property for analytic
functions:

f(a) =
1
2π

∫ 2π

0

f(a + reiφ) dφ, 0 < r < dist (a, C) = R

for a inside C. The value f(a) of f at the center a of the disk |z − a| < r
is expressed by the integration of f over the boundary circle |z − a| = r of
this disk. Note that f(a) is the same for all r in the interval (0, R). We wish
to obtain similar expression for a point of the disk |z − a| < r other than
the center. But an analog to the Cauchy integral formula for the circle is an
expression for the harmonic function at all points inside the circle in terms of
its values on the circle.

Lemma 10.17. (Poisson Integral Formula for Analytic Functions) Sup-
pose f(z) is analytic in a domain containing the closed unit disk |z| ≤ 1.
Then for |z| < 1, we have

f(z) =
1
2π

∫
|ζ|=1

1 − |z|2
|ζ − z|2 f(ζ)

dζ

iζ
, (10.5)

or equivalently,

f(z) =
1
2π

∫ 2π

0

1 − |z|2
|eiφ − z|2 f(eiφ) dφ. (10.6)

Proof. By Cauchy’s integral formula, we have

f(z) =
1

2πi

∫
|ζ|=1

f(ζ)
ζ − z

dζ =
1
2π

∫ 2π

0

ζf(ζ)
ζ − z

dφ (|z| < 1). (10.7)

If z = 0, the result follows from Gauss’s mean-value theorem. So we may
suppose that z �= 0, and set

z∗ = 1/z
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which is the reflection of z in the unit circle. The point z∗, which lies on the
ray from the origin through z, is outside the unit circle |ζ| = 1. Hence (as
z∗ = 1/z), for |z| < 1

0 =
1

2πi

∫
|ζ|=1

f(ζ)
ζ − z∗

dζ = − 1
2πi

∫
|ζ|=1

zf(ζ)
1 − ζz

dζ. (10.8)

Subtracting (10.8) from (10.7), we get

f(z) =
1

2πi

∫
|ζ|=1

[
1

ζ − z
+

z

1 − ζz

]
f(ζ) dζ. (10.9)

We can simplify (since |ζ| = 1) to

1
ζ − z

+
z

1 − ζz
=

1 − |z|2
(ζ − z)(1 − ζz)

=
1 − |z|2

(ζ − z)(ζ − z)ζ
=

1 − |z|2
|ζ − z|2

1
ζ
.

Using the last equality, (10.9) gives (10.5). Equation (10.6) follows if we let
ζ = eiθ in (10.5).

The following general result is a consequence of Lemma 10.17.

Theorem 10.18. (Poisson Integral Formula for analytic functions) Sup-
pose f(z) is analytic in a domain containing the closed disk |z−a| ≤ R. Then
for |z − a| < R, we have

f(z) =
1
2π

∫
|ζ−a|=R

R2 − |z − a|2
|ζ − z|2 f(ζ)

dζ

i(ζ − a)
,

or equivalently,

f(z) =
1
2π

∫ 2π

0

R2 − |z − a|2
|Reiφ − (z − a)|2 f(a + Reiφ) dφ. (10.10)

Proof. By the change of variable w = (z − a)/R, it reduces to the case where
R = 1 and a = 0.

In particular, for a = 0, the formula reduces to

f(reiθ) =
1
2π

∫ 2π

0

R2 − r2

|Reiφ − reiθ|2 f(Reiφ) dφ.

The expression (with ζ = Reiφ, z = reiθ and r < R)

P (z, ζ) =
|ζ|2 − |z|2
|ζ − z|2 = Re

(
ζ + z

ζ − z

)
=

R2 − r2

R2 − 2rR cos(θ − φ) + r2

is known as the Poisson kernel for the disk |z| < R. Note that the Poisson
kernel is bounded above by
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R2 − r2

R2 − 2rR + r2
=

R + r

R − r
,

and is bounded below by

R2 − r2

R2 + 2rR + r2
=

R − r

R + r
.

Let a = 0 and let f(z) = u(z) + iv(z) be analytic for |z| ≤ R. Then, from
Theorem 10.18, it follows that

f(z) =
1
2π

∫
|ζ|=R

P (z, ζ)f(ζ) dφ

and, equating the real part gives

Theorem 10.19. (Poisson Integral Formula for Harmonic Functions) Sup-
pose u(z) is harmonic in a domain containing the disk |z| ≤ R. Then for
z = reiθ, r < R, we have

u(z) =
1
2π

∫
|ζ|=R

P (z, ζ)u(ζ) dφ;

or equivalently,

u(reiθ) =
1
2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − φ) + r2
u(Reiφ) dφ.

A similar formula holds for the imaginary part v(z) of f(z).

Corollary 10.20. For r < R and θ arbitrary,

1
2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − φ) + r2
dφ =

1
2π

∫ 2π

0

P (reiθ, Reiφ) dφ = 1.

Proof. Set u(z) ≡ 1 in Theorem 10.19.

Theorem 10.21. Suppose f(z) = u(z) + iv(z) is analytic in the disk |z| ≤ 1.
Then for |z| < 1, we may express f(z) as

f(z) =
1
2π

∫ 2π

0

ζ + z

ζ − z
u(ζ) dφ + iv(0) (ζ = eiφ). (10.11)

Proof. To do this it suffices to recall (10.7) and (10.8):

f(z) =
1
2π

∫ 2π

0

ζ

ζ − z
f(ζ) dφ, (10.12)

and (because ζζ = 1),
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0 = − 1
2πi

∫
|ζ|=1

z

1 − ζz
f(ζ) dζ = − 1

2π

∫ 2π

0

z

ζ − z
f(ζ) dφ.

Since the integral on the right is a Riemann integral, taking conjugation on
the right leads to

0 = − 1
2π

∫ 2π

0

z

ζ − z
f(ζ) dφ. (10.13)

Writing f(ζ) = u(ζ) + iv(ζ), and then adding (10.12) and (10.13) shows that

f(z) =
1
2π

∫ 2π

0

ζ + z

ζ − z
u(ζ) dφ + i

1
2π

∫ 2π

0

v(ζ) dφ.

The desired formula (10.11) follows if we apply the mean-value property for
the last integral to the harmonic function v.

Equation (10.11) (also known as the Schwarz formula) determines the an-
alytic function f(z) within an additive imaginary constant once its real part
on the unit circle is given. Thus, Schwarz formula is considered to be more
powerful than the Poisson integral formula. Nevertheless, the latter is a funda-
mental formula in mathematical physics and fluid mechanics. More generally,
by the change of variable w = z/R, Theorem 10.21 gives

Theorem 10.22. Suppose f(z) = u(z)+ iv(z) is analytic in the disk |z| ≤ R.
Then for |z| < R, we may express f(z) as

f(z) =
1
2π

∫ 2π

0

ζ + z

ζ − z
u(ζ) dφ + iv(0) (ζ = Reiφ); (10.14)

or equivalently,

f(z) =
1
2π

∫ 2π

0

Reiφ + reiθ

Reiφ − reiθ
u(Reiφ) dφ + iv(0).

(The integral on the right is called the complex Poisson integral).

Equating imaginary part on both sides of (10.14) gives

Corollary 10.23. Suppose f(z) = u(z)+iv(z) is analytic in the disk |z| ≤ R.
Then for ζ = Reiφ, z = reiθ and r < R, we may also express v(z) as

v(z) =
1
2π

∫
|ζ|=R

Im
(

ζ + z

ζ − z

)
u(ζ) dφ + v(0),

or equivalently

v(reiθ) =
1
2π

∫ 2π

0

2rR sin(θ − φ)
R2 − 2rR cos(θ − φ) + r2

u(Reiφ) dφ + v(0).
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Remark 10.24. We know in general (Exercise 10.16(5)) that an analytic
function is determined to within an imaginary constant by its real part. In
the case that the function f(z) = u(z) + iv(z) is analytic in the disk |z| ≤ R,
Theorem 10.22 gives this relationship explicitly. •

As we shall now see, the conclusion of Theorem 10.19 is valid under less
stringent conditions. It need not be assumed that u(z) is harmonic on the
circle |z| = R. The proof requires an acquaintance with the notion of uniform
convergence. Again it suffices to deal with R = 1, since the general case follows
from a simple transformation.

Theorem 10.25. Suppose u(z) is harmonic in the open disk |z| < 1 and
continuous on the closed disk |z| ≤ 1. Then for z = reiθ, r < 1, we have

u(reiθ) =
1
2π

∫ 2π

0

1 − r2

1 − 2r cos(θ − φ) + r2
u(eiφ) dφ.

Proof. Let f(z) = u(z) + iv(z) be analytic for |z| < 1, and let {tn} be an
increasing sequence of positive real numbers approaching 1. Then for each n,
define

fn(z) = f(tnz), un(z) = u(tnz), and vn(z) = v(tnz).

Clearly, vn(0) = v(0) for each n and

un(z) = Re f(tnz), and vn(z) = Im f(tnz).

As u(tnz) is harmonic in the closed disk |z| ≤ 1, we obtain that f(tnz) is
analytic in the closed disk |z| ≤ 1 (since 1/tn > 1), and so Theorem 10.21 is
applicable for fn. Thus, for each fixed z with |z| < 1,

fn(z) =
1
2π

∫ 2π

0

eiφ + z

eiφ − z
un(eiφ) dφ + ivn(0).

Since fn(z) is continuous at z (|z| < 1) and tnz → z as n → ∞,

lim
n→∞ fn(z) = lim

n→∞ f(tnz) = f(z), |z| < 1.

The proof will be completed by verifying that∫ 2π

0

eiφ + z

eiφ − z
un(eiφ) dφ →

∫ 2π

0

eiφ + z

eiφ − z
u(eiφ) dφ. (10.15)

(Recall that vn(0) = v(0)). It suffices to show that the difference∣∣∣∣
∫ 2π

0

eiφ + z

eiφ − z
(un(eiφ) − u(eiφ)) dφ

∣∣∣∣ ≤ 1 + r

1 − r

∫ 2π

0

∣∣un(eiφ) − u(eiφ)
∣∣ dφ

can be made arbitrarily small. Note that, u(z), being continuous on the com-
pact set |z| ≤ 1, is uniformly continuous on |z| ≤ 1. So
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un(eiφ) = u(tneiφ) → u(eiφ)

uniformly with respect φ, 0 ≤ φ ≤ 2π. Consequently, the expression on the
last integral converges to zero as n → ∞. Thus, for |z| < 1, we have

f(z) =
1
2π

∫ 2π

0

eiφ + z

eiφ − z
u(eiφ) dφ + iv(0).

Equating the real part on both sides, we have the desired result.

Remark 10.26. The uniform continuity of u(z) (|z| ≤ 1) enabled us to show
that the sequence un(z) = u(tnz) converged uniformly to u(z) (|z| ≤ 1). Thus,
the validity of (10.15) is a consequence of Theorem 8.11. •

By a simple transformation, Theorem 10.25 shows that a function, har-
monic for |z| < R and continuous for |z| ≤ R, has the property that its values
inside the disk are determined by its values on the boundary. Suppose, in-
stead, that we start with a real-valued function F (θ) continuous on the circle
|z| = R. Does there exist a function u(z) harmonic in the disk |z| < R hav-
ing prescribed boundary values? More generally, the Dirichlet problem deals
with the following question: Given a domain D, and a function F : ∂D → R,
does there exist a function u that is harmonic in D such that u = F on the
boundary ∂D? The solution to this problem has immediate applications in
fluid mechanics. Our next theorem solves the Dirichlet problem for the disk.

Theorem 10.27. (Schwarz’s Theorem) Let F be a continuous function of a
real variable defined on the unit circle |ζ| = 1. Then the real-valued function
u(z) defined by

u(z) =
1
2π

∫ 2π

0

P (z, eiφ)F (eiφ) dφ (|z| < 1)

is harmonic in the disk |z| < 1, and for each fixed t, 0 ≤ t ≤ 2π,

lim
z→eit

u(z) := lim
r→1−
θ→t

u(reiθ) = F (eit) (|z| < 1).

( In addition, if we let u(z) = F (z) for |z| = 1, then u(z) becomes continuous
for |z| ≤ 1 ).

Proof. First we verify that the function u defined in the statement is harmonic
in the disk |z| < 1. To see this, we may rewrite

u(z) = Re
[

1
2π

∫ 2π

0

eiφ + z

eiφ − z
F (eiφ) dφ

]

= Re

[
1
2π

∫
|ζ|=1

ζ + z

ζ − z
F (ζ)

dζ

iζ

]
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= Re

[
1

2πi

∫
|ζ|=1

(
2

ζ − z
− 1

ζ

)
F (ζ) dζ

]

= Re [2f(z) − f(0)] , f(z) =
1

2πi

∫
|ζ|=1

F (ζ)
ζ − z

dζ.

Note that f(z) is an analytic function in |z| < 1, and

f(0) =
1

2πi

∫
|ζ|=1

F (ζ)
ζ

dζ =
1
2π

∫ 2π

0

F (eiφ) dφ = F (0) ∈ R.

Thus, u(z) is a real part of an analytic function 2f(z) − f(0) for |z| < 1, and
therefore it is harmonic in |z| < 1.

To prove the second part, we must show that to each fixed ζ (|ζ| = 1),

u(z) → F (ζ) as z → ζ := eit (|z| < 1),

on the assumption that F is a continuous function of t, 0 ≤ t ≤ 2π. Thus, we
need to show that, for each ε > 0, there corresponds a δ > 0 such that∣∣u(z) − F (eit)

∣∣ < ε

for all z satisfying |z − eit| < δ. To do this, we first recall that

1 =
1
2π

∫ 2π

0

P (z, eiφ) dφ (|z| < 1),

and noting that P (z, eiφ) > 0, we consider the expression

u(z) − F (eit) =
1
2π

∫ 2π

0

P (z, eiφ)[F (eiφ) − F (eit)] dφ. (10.16)

From the definition of the Poisson kernel

P (reit, eit) = Re
(

eit + reit

eit − reit

)
=

1 + r

1 − r

so that limr→1 P (reit, eit) = ∞, whereas for θ �= t with |θ − t| < π,

lim
r→1

P (reiθ, eit) = lim
r→1

Re
(

eit + reiθ

eit − reiθ

)
= Re

(
eit + eiθ

eit − eiθ

)
= 0.

To show that (10.16) can be made arbitrarily small in absolute value, we have
for a small δ > 0

|u(z) − F (eit)| ≤ 1
2π

∫ t+δ

t−δ

P (z, eiφ)|F (eiφ) − F (eit)| dφ

+
1
2π

∫ 2π+t−δ

t+δ

P (z, eiφ)|F (eiφ) − F (eit)| dφ.
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Note that the integrand in (10.16) is periodic in φ of period 2π and so, we
have used the fact that

∫ 2π

0
=

∫ 2π+t−δ

t−δ
=

∫ t+δ

t−δ
+

∫ 2π+t−δ

t+δ
. By the continuity

of F at t, for an arbitrary ε > 0, there is a small δ > 0 such that

|F (eiφ) − F (eit)| < ε whenever |φ − t| < δ.

We use this for the first integral in the last inequality. On the other hand, for
|φ − t| ≥ δ and | arg z − arg ζ| = | arg z − t| < δ/2 with z = reiθ, we have (see
Figure 10.1)

Figure 10.1.

|θ − φ| = |θ − t − (φ − t)| ≥ |φ − t| − |θ − t| = δ − δ/2 = δ/2.

Therefore, for |φ − t| ≥ δ and |θ − t| < δ/2, we have

P (z, eiφ) =
1 − r2

1 − 2r cos(θ − φ) + r2

=
1 − r2

(1 − r)2 + 2r(1 − cos(θ − φ))

=
1 − r2

(1 − r)2 + 4r sin2((θ − φ)/2)

<
1 − r2

4r sin2(δ/4)

and use this for the second integral. Thus, for | arg z − t| < δ/2,

|u(z) − F (eit)| ≤ ε

2π

∫ t+δ

t−δ

P (z, eiφ) dφ

+
1
2π

[
2 max
|ζ|=1

|F (ζ)| 1 − r2

4r sin2(δ/4)
(2π − 2δ)

]

< ε + max
|ζ|=1

|F (ζ)| 1 − r2

2r sin2(δ/4)
.
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The second term on the right can be made less than any ε > 0 for r close to
1. Thus, there exists a δ′ > 0 such that∣∣u(z) − F (eit)

∣∣ < 2ε whenever z with |z| < 1 and |z − eit| < δ′.

Thus, limz→eit u(z) = F (eit).

Remark 10.28. A slight modification in the above proof shows that any
function satisfying the conditions of the theorem must be continuous on the
closed disk |z| ≤ 1. In view of Corollary 10.11, the function u(z) of Theorem
10.19 (with R = 1) is the only function that can satisfy the conditions of the
theorem. Using the Riemann mapping theorem which will be proved in Chap-
ter 11, we see that Dirichlet’s problem can be solved for simply connected
domain D. •

A simple translation applied to Theorem 10.27 leads to a general result
which we formulate as follows.

Theorem 10.29. Let F (φ) := F (Reiφ) be a continuous function of the real
variable φ, 0 ≤ φ ≤ 2π, with F (0) = F (2π). Then the function u(z) defined
by

u(z) =
1
2π

∫ 2π

0

P (z, Reiφ)F (Reiφ) dφ (|z| < R)

satisfies the following conditions:

(i) u(z) is harmonic in the disk |z| < R.
(ii) For each fixed t, 0 ≤ t ≤ 2π,

lim
z→Reit

u(z) = F (Reit) (|z| < R).

Remark 10.30. By requiring in Theorem 10.29 only that the function F (φ)
be sectionally continuous, the conclusion (i) still holds with the restriction
that limr→R u(reiθ) = F (θ) only at the points of continuity for F . The proof
is identical. Again, the analog of Theorem 10.27 for |z − z0| ≤ R follows
routinely as well. •
Example 10.31. Suppose that we wish to find a real-valued function u har-
monic in the open first quadrant D = {z = x + iy : x, y > 0}, continuous on
D \ {0} and u(x, 0) = 5 for x > 0 and u(0, y) = 3 for y > 0.

To do this, we may consider

Log z = ln |z| + iArg z on Dπ = C \ (−∞, 0].

Then v(x, y) = Arg z is harmonic on Dπ,

v(x, 0) = 0 for x > 0 and v(0, y) = π/2 for y > 0.

To obtain u satisfying the desired properties, we define
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u(x, y) = av(x, y) + b.

To find a and b, we set y = 0 and obtain

5 = u(x, 0) = av(x, 0) + b = a(0) + b, i.e., b = 5.

Setting x = 0, we have

3 = u(0, y) = av(0, y) + b = a(π/2) + b, i.e., a = −4/π.

The desired function is then

u(x, y) = −(4/π)Arg z + 5.

This problem can be also solved by using the Poisson integral formula for the
half-plane (see Exercise 10.35(10)).

Remark 10.32. As remarked before, the results of this section that are stated
for unit disks could be stated for arbitrary disks. To illustrate, suppose u(z) is
harmonic in a domain containing the disk |z − z0| ≤ R. Setting z − z0 = reiθ,
the conclusion of Theorem 10.19 remains valid for any point inside the circle
|z − z0| = R. •
Example 10.33. Solve the Dirichlet problem:

uxx + uyy = 0, −∞ < x < ∞, y > 0,

subject to u(x, 0) = 0 for |x| > 1 and u(x, 0) = x for x ∈ (−1, 1), see Fig-
ure 10.2. According to Exercise 10.35(10)

u(x, y) =
y

π

∫ 1

−1

t dt

(x − t)2 + t2

and a simple computation gives

u(x, y) =
x

π

[
tan−1 x + 1

y
− tan−1 x − 1

y

]
+

y

2π
ln

(x − 1)2 + y2

(x + 1)2 + y2
. •

0

0 11

0x0

Figure 10.2.
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Questions 10.34.

1. What properties of the point z∗, chosen in the proof of Theorem 10.19,
made the proof work?

2. Can Theorem 10.14 be proved using Poisson’s formula?
3. If F (φ), defined on the circle |z| = R, is continuous at all but a finite

number of points, is there a unique function u harmonic for |z| < R that
approaches F (φ) as z approaches the boundary?

4. Can the solution to the Dirichlet problem for the disk be used to solve
a Dirichlet problem for different regions?

5. What is the relationship between Theorem 10.6 and Theorem 10.19?

Exercises 10.35.

1. If f(z) is a continuous function on |z| = 1, show that F (z) defined by

F (z) =
1

2πi

∫ 2π

0

f(ζ)
ζ − z

dζ

is analytic for |z| < 1.
2. (a) For ρ = Reiφ, z = reiθ (r < R), show that

ρ + z

ρ − z
= 1 + 2

∞∑
n=1

( r

R

)n

ein(θ−φ).

(b) Conclude that

R2 − r2

R2 − 2rR cos α + r2
= 1 + 2

∞∑
n=1

( r

R

)n

cos nα (α real).

3. Use the previous exercise to find an alternate expression for the conclu-
sion of Theorem 10.19.

4. Show that ∫ 2π

0

sin(θ − φ)
R2 − 2rR cos(θ − φ) + r2

dφ = 0.

5. If u(z) is harmonic for |z| > R and continuous for |z| ≥ R, show that
for ρ = Reiφ, z = reiθ (r > R),

u(z) = − 1
2π

∫ 2π

0

Re
ρ + z

ρ − z
u(Reiθ) dφ.

6. Find a function u(z) harmonic in the disk |z| < R for which

lim
r→R

u(reiθ) =
{

0 if 0 < θ < π
1 if π < θ < 2π.
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7. Show that the function

u(reiθ) =
2
π

tan−1 2r sin θ

1 − r2
(r < 1)

is harmonic for |z| < 1 and satisfies the boundary conditions

lim
r→1

u(reiθ) =
{

1 if 0 < θ < π
−1 if π < θ < 2π.

8. Set F (θ) = θ/2, 0 ≤ θ ≤ 2π. Show that the function

u(reeiθ) = tan−1 r sin θ

1 + r cos θ

is harmonic for |z| < 1, and that limr→1 u(reiθ) = F (θ) for all θ. Can
you derive this from the Poisson integral formula?

9. Suppose f = u + iv is analytic and bounded on the real line and the
upper half-plane. Show that for z = x + iy, y > 0, we have

u(z) =
y

π

∫ ∞

−∞

u(t, 0)
(t − x)2 + y2

dt, v(z) =
y

π

∫ ∞

−∞

v(t, 0)
(t − x)2 + y2

dt.

These are called the Poisson integral formula for u and v in the upper
half-plane.

10. Using the previous exercise, formulate and solve a Dirichlet problem for
a half-plane. More precisely, prove the following: If F (x) is a continuous
function on R, then show that the function u(x, y) defined by

u(x, y) =
y

π

∫ ∞

−∞

F (t)
(x − t)2 + y2

dt

is a solution of the Dirichlet problem in the upper half-plane Im z > 0
with the boundary condition u(x, 0) = F (x) for x ∈ R.

11. Suppose that f = u + iv is analytic for |z| < 1. Show that for |z| <
r (0 < r < 1),

f (n)(z)
n!

=
1

2πi

∫
|ζ|=r

2
(ζ − z)n+1

u(ζ) dζ.

12. Find a harmonic function u on the upper half-plane Im z > 0 such that
u(x, 0) = 0 for x > 0 and u(x, 0) = 1 for x < 0.

13. Find a harmonic function u on the upper half-plane Im z > 0 such that
(a) u(x, 0) = 1 for x < −1
(b) u(x, 0) = 2 for −1 < x < 1
(c) u(x, 0) = 3 for x > 1.

14. Find a function u(z) harmonic for |z| < 1 such that

lim
r→1

u(reiθ) =
{

1 if 0 < θ < π
0 if π < θ < 2π.

15. Suppose that f = u + iv is entire and z−1Re f(z) → 0 as z → ∞. Show
that f is a constant.
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10.3 Positive Harmonic Functions

As an application of Poisson’s integral formula, we prove

Theorem 10.36. (Harnack’s Inequality) Suppose u(z) is harmonic in the
disk Δ(z0; R) = {z : |z − z0| < R}, with u(z) ≥ 0 for all z ∈ Δ(z0; R). Then
for every z in this disk, we have

u(z0)
R − |z − z0|
R + |z − z0|

≤ u(z) ≤ u(z0)
R + |z − z0|
R − |z − z0|

.

Proof. Fix z ∈ Δ(z0; R), and let s < R. Then, for every s with s < R, the
Poisson integral formula given by Theorem 10.18 leads to

u(z) =
1
2π

∫ 2π

0

s2 − |z − z0|2
|seiφ − (z − z0)|2

u(z0 + seiφ) dφ (10.17)

for every z ∈ Δ(z0; s). Using the positivity of u(z) and the inequality

s − |z − z0|
s + |z − z0|

≤ s2 − |z − z0|2
|seiφ − (z − z0)|2

≤ s + |z − z0|
s − |z − z0|

we get, from (10.17),

s − |z − z0|
s + |z − z0|

u(z0) ≤ u(z) ≤ s + |z − z0|
s − |z − z0|

u(z0)

because, by the mean-value property (i.e., (10.17) for z = z0),

u(z0) =
1
2π

∫ 2π

0

u(z0 + seiφ) dφ.

Since the last inequalities are valid whenever |z − z0| ≤ s < R, these inequal-
ities continues to hold when s approaches R.

Using Harnack’s inequality we can present an alternate proof of Liouville’s
theorem for harmonic functions (Theorem 10.4) in the following form.

Corollary 10.37. If u is harmonic in C and is bounded above (or below),
then u is constant.

Proof. It suffices to prove for u(z) ≥ 0 in C. Fix z (|z| = r) and let R > r. By
Harnack’s inequality

R − r

R + r
u(0) ≤ u(reiθ) ≤ R + r

R − r
u(0).

Letting R → ∞, we see that u(z) ≤ u(0) so that u attains its maximum at
z = 0 and therefore, u is constant for |z| < r and hence in C.
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It was shown (see Theorem 10.6) that every harmonic function satisfies
the mean-value property. For continuous functions, the converse is also true.

Theorem 10.38. Suppose u(z) is a real-valued continuous function such that
for each point z0 in a domain D,

u(z0) =
1
2π

∫ 2π

0

u(z0 + reiθ) dθ

whenever the disk |z − z0| ≤ r is contained in D. Then u(z) is harmonic
throughout D.

Proof. Choose a point z0 ∈ D and r > 0 such that |z− z0| ≤ r is contained in
D. As a consequence of Theorem 10.29, there exists a function u1(z) harmonic
for |z − z0| < r, continuous for |z − z0| ≤ r, and equal to u(z) on the circle
|z − z0| = r. Since u1(z) − u(z) is a continuous function that satisfies the
mean-value property, the first proof of Theorem 10.9 shows that u1(z)− u(z)
attains both its maximum and minimum on the boundary. Because

u1(z) − u(z) ≡ 0 on |z − z0| = r,

it follows that u1(z) ≡ u(z) for |z − z0| < r. Hence u(z) is harmonic in a
neighborhood of z0. Since z0 was arbitrary, u(z) is harmonic in D.

Thus, a necessary and sufficient condition for a continuous function to be
harmonic in a domain is that it satisfies the mean-value property at each point
in the domain. As an application, we prove the following analog to Theorem
8.16.

Theorem 10.39. Suppose {un(z)} is a sequence of real-valued harmonic
functions that converges uniformly on all compact subsets of a domain D
to a function u(z). Then u(z) is harmonic throughout D.

Proof. Since un(z) is continuous for each n, the continuity of u(z) is a conse-
quence of Theorem 6.26. Given z0 ∈ D and a disk |z − z0| ≤ r contained in
D, we have for each n that

un(z0) =
1
2π

∫ 2π

0

un(z0 + reiθ) dθ.

By Theorem 8.11,

u(z0) = lim
n→∞un(z0) = lim

n→∞
1
2π

∫ 2π

0

un(z0 + reiθ) dθ

=
1
2π

∫ 2π

0

u(z0 + reiθ) dθ.

Thus, u has the mean-value property. The result now follows from Theorem
10.38.
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Harnack’s inequality leads to a theorem concerning sequences of harmonic
functions.

Theorem 10.40. (Harnack’s Principle) Suppose {un(z)} is a sequence of
real-valued harmonic functions defined in a domain D, and that un+1(z) ≥
un(z) for each z ∈ D and each n. If {un(z)} converges for at least one point
in D, then {un(z)} converges for all points in D. Furthermore, the conver-
gence is uniform on compact subsets of D, and the limit function is harmonic
throughout D.

Proof. We may assume that un(z) ≥ 0; for if not, the theorem can be proved
for the nonnegative sequence {un(z)− u1(z)}. By the monotonicity property,
for each z in D, either {un(z)} converges or approaches ∞. Let

A = {z ∈ D : un(z) → ∞}, and B = {z ∈ D : un(z) converges}.

Given z0 ∈ D, choose a disk |z − z0| ≤ R contained in D. Then for all z
satisfying |z − z0| ≤ R/2, Harnack’s inequality gives

1
3
un(z0) =

R − R/2
R + R/2

un(z0) ≤ un(z) ≤ R + R/2
R − R/2

un(z0) = 3un(z0). (10.18)

If un(z0) → ∞, the left hand inequality of (10.18) shows that un(z) → ∞ for
|z − z0| ≤ R/2. If {un(z0)} converges, the right hand inequality shows that
{un(z)} converges for |z − z0| ≤ R/2. Hence, A and B are both open sets,
with A ∪ B = D. Since the domain D is connected, either A = ∅ or B = ∅.
By hypothesis, there is at least one point in B. Thus B = D, and {un(z)}
converges for all z in D.

Next we must show that {un(z)} converges uniformly on compact subsets
of D. Applying Harnack’s inequality to un+p(z)−un(z), we get as in (10.18),

un+p(z) − un(z) ≤ 3[un+p(z0) − un(z0)] (10.19)

for |z − z0| ≤ R/2 and p = 1, 2, . . . . By the Cauchy criterion,

un+p(z0) − un(z0) < ε (n > N(ε)).

Hence from (10.19), we see that {un(z)} converges uniformly in some neigh-
borhood of z0. Since z0 was arbitrary, to every point in D there corresponds
a neighborhood in which the convergence of {un(z)} is uniform.

Now let K be a compact subset of D. For each point of K, construct a
neighborhood in which {un(z)} converges uniformly. By the Heine–Borel the-
orem, finitely many such neighborhoods cover K. But a sequence converging
uniformly on finitely many different sets must converge uniformly on their
union. Therefore, {un(z)} converges uniformly on K.

Finally, it follows from Theorem 10.39 that the limit function is harmonic
throughout D.
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Remark 10.41. According to Harnack’s principle, boundedness of the se-
quence {un(z)} at one point forces the boundedness for all other points of D.
Further, the contrapositive of the theorem says that if the sequence approaches
∞ at one point in the domain, then it approaches ∞ at all points. That this
can actually happen is seen by considering the sequence un(z) = x+n, which
is harmonic in every domain and satisfies the conditions of the theorem. •

We turn now to the class of analytic functions with positive real part in
the disk |z| < 1, and apply our knowledge of harmonic functions. According
to Harnack’s inequality, if u(z) is harmonic and positive for |z| < 1 with
u(0) = 1, then

u(z) ≤ 1 + |z|
1 − |z| (|z| < 1).

Consider the following generalization to analytic functions.

Theorem 10.42. Suppose f(z) is analytic for |z| < 1 with f(0) = 1. If
Re f(z) > 0 for |z| < 1, then

|f(z)| ≤ 1 + |z|
1 − |z| (|z| < 1).

Proof. Set Re f(z) = u(z). In view of (10.11), we may write

f(z) =
1
2π

∫ 2π

0

Reiφ + z

Reiφ − z
u(Reiφ) dφ (|z| < R < 1).

Hence,

|f(z)| ≤ R + |z|
R − |z|

1
2π

∫ 2π

0

u(Reiφ) dφ =
R + |z|
R − |z|u(0) =

R + |z|
R − |z| .

By letting R → 1−, the result is obtained.
Here is an alternate proof which relies on Schwarz’s inequality (Schwarz’s

lemma) rather than on Harnack’s inequality. If Re f(z) > 0, then the function

g(z) =
f(z) − 1
f(z) + 1

(10.20)

satisfies |g(z)| < 1 for |z| < 1. Since g(0) = 0, it follows from Schwarz’s
inequality that |g(z)| ≤ |z| for |z| < 1. Solving for f(z) in (10.20), we get

f(z) =
1 + g(z)
1 − g(z)

.

But

|f(z)| ≤ 1 + |g(z)|
1 − |g(z)| ≤

1 + |z|
1 − |z| ,

and the proof is complete.
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Clearly, Theorem 10.42 is a generalization of Harnack’s inequality because
Re f(z) ≤ |f(z)|.

Remark 10.43. The assumption f(0) = 1 does not restrict the generality of
the inequality. For if Re f(z) > 0, then the theorem can be applied to the
function

h(z) =
f(z) − iIm f(0)

Re f(0)
,

which satisfies the conditions Re h(z) > 0, h(0) = 1. Also, if we had assumed
only that Re f(z) ≥ 0 for |z| < 1, we could have deduced from the open
mapping theorem that Re f(z) > 0 for |z| < 1. •

Our next theorem may also be proved by methods that rely on harmonic
functions or on Schwarz’s lemma.

Theorem 10.44. Suppose f(z) = 1 +
∑∞

n=1 anzn is analytic for |z| < 1. If
Re f(z) > 0 for |z| < 1, then |an| ≤ 2 for every n.

Proof. Set f(z) = u(reiθ) + iv(reiθ), with an = αn + iβn. Then

u(reiθ) = 1 + Re
∞∑

m=1

amrmeimθ = 1 +
∞∑

m=1

(αm cos mθ − βm sin mθ)rm.

This series converges uniformly on the circle |z| = r < 1. By Theorem 8.11,
we may multiply by cosnθ or sinnθ and then integrate term-by-term. Since∫ 2π

0

cos nθ cos mθ dθ =
∫ 2π

0

sin nθ sinmθ dθ = 0

for n �= m and ∫ 2π

0

cos nθ sinmθ dθ = 0

for all n and m, we have the identities

1
π

∫ 2π

0

u(reiθ) cos nθ dθ =
1
π

∫ 2π

0

αnrn cos2 nθ dθ = αnrn, (10.21)

1
π

∫ 2π

0

u(reiθ) sinnθ dθ =
1
π

∫ 2π

0

−βnrn sin2 nθ dθ = −βnrn. (10.22)

Multiplying (10.22) by −i and adding to (10.21), we obtain

anrn = (αn + iβn)rn =
1
π

∫ 2π

0

u(reiθ)e−inθ dθ.

Thus,
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|an|rn ≤ 1
π

∫ 2π

0

u(reiθ)|e−inθ| dθ =
1
π

∫ 2π

0

u(reiθ) dθ.

By the mean-value property,

1
π

∫ 2π

0

u(reiθ) dθ = 2u(0) = 2.

Hence, |an|rn ≤ 2. Letting r → 1−, the result follows.
As an alternate proof, consider

g(z) =
f(z) − 1
f(z) + 1

which is analytic in the disk |z| < 1, with g(0) = 0 and |g(z)| < 1. By Exercise
8.73(10), |g′(0)| ≤ 1. But g′(0) = a1/2, so that |a1| ≤ 2.

We will now show that |an| ≤ 2, for arbitrary n by constructing a new
function of the form 1 + anz + · · · , which satisfies the conditions of the
theorem. In view of the identity

n∑
k=1

e(2kπi)m/n =
{

n if m is a multiple of n
0 otherwise,

we can verify (do it!) that the function

h(z) =
1
n

n∑
k=1

f(e2kπi/nz1/n) = 1 + anz + · · ·

is analytic for |z| < 1, and has positive real part. Therefore, |an| ≤ 2 and the
proof is complete.

The function
f(z) =

1 + z

1 − z

maps the circle |z| = 1 onto the imaginary axis and the disk |z| < 1 onto the
right half-plane. This function shows that equality holds in the previous two
theorems. That is,

Re f(z) =
1 + |z|
1 − |z|

when z is a positive real number, and

f(z) =
1 + z

1 − z
= (1 + z)

∞∑
n=0

zn = 1 + 2
∞∑

n=0

zn.

Questions 10.45.

1. Can the mean-value property hold for discontinuous functions?
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2. If two continuous functions satisfy the mean-value property, does their
sum? Their product?

3. Suppose {un(z)} is a sequence of harmonic functions having harmonic
conjugates {vn(z)}. If {un(z)} converges uniformly in a region, does
{vn(z)} also converge uniformly?

4. Is the conclusion of Theorem 10.40 valid if the hypothesis un+1(z) ≥
un(z) is replaced with un+1(z) ≤ un(z)?

5. What kind of generalizations of Theorem 10.42 can you prove?
6. Why are some theorems valid for compact subsets of a domain but not

for the whole domain?
7. Where was the positivity of Re f(z) used in the first proof of Theorem

10.44?
8. What is the relationship between Schwarz’s inequality and Harnack’s

inequality?

Exercises 10.46.

1. Suppose {un(z)} is a sequence of functions harmonic in a domain D,
and that un+1(z) ≥ un(z) for each z ∈ D and each n. If un(z0) → ∞
for some z0 ∈ D, show that un(z) → ∞ uniformly on compact subsets.
That is, given a compact subset C and a real number M , show that
un(z) ≥ M for n > N and all z ∈ C.

2. Let K be a compact subset of a domain D. Given z0 ∈ D, show that
there exist real constants A and B (depending on z0, K, and D) such
that

A · u(z0) ≤ u(z) ≤ B · u(z0)

for all z in K and all functions u(z) harmonic in D.
3. A continuous real-valued function u(z) is said to be subharmonic in a

domain in D if

u(z0) ≤
1
2π

∫ 2π

0

u(z0 + reiθ) dθ

for every disk |z − z0| ≤ r contained in D. Show that a nonconstant
subharmonic function cannot attain a maximum in a domain. Can it
attain a minimum?

4. Suppose f(z) is analytic with Re f(z) > 0 for |z| < 1. If f(0) = 1, then
apply Theorem 10.42 to 1/f(z) to show that

|f(z)| ≥ 1 − |z|
1 + |z| .

Can this be deduced from Harnack’s inequality?
5. Suppose g(z) is analytic for |z| < 1 with g(0) = 1. If Re g(z) > α, show

that

|g(z)| ≤ 1 + (1 − 2α)|z|
1 − |z| (|z| < 1).
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6. Under the assumptions of the previous exercise, show that

|g(z)| ≥ 1 − (1 − 2α)|z|
1 + |z| (|z| < 1).

7. Suppose that g(z) = 1 +
∑∞

n=1 anzn is analytic for |z| < 1, with
Re g(z) > α. Show that |an| ≤ 2(1 − α) for every n.

8. Suppose that g(z) is analytic for |z| < 1 with g(0) = a > 0. If Re g(z) > 0
in |z| < 1, then show that∣∣∣∣g(z) − a

g(z) + a

∣∣∣∣ ≤ |z| for |z| < 1, and |g′(0)| ≤ 2a.

9. Suppose that g(z) is analytic for |z| < 1, and g(0) = 0. If Re g(z) <
a (a > 0), show that

|g(z)| ≤ 2a|z|
1 − |z| for |z| < 1.

Is |g′(0)| ≤ 2a?
10. Show that equality holds in Theorem 10.42 and Theorem 10.44 if and

only if f(z) is of the form

f(z) =
1 + eiθ0z

1 − eiθ0z
(θ0 real).
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Conformal Mapping and the Riemann
Mapping Theorem

Our study of mapping properties in Chapters 3 and 4 was limited because
derivatives had not yet been introduced. That remedied, we look anew at
some old functions. We shall see that the derivative relates the angle between
two curves to the angle between their images. In addition, the derivative will
be seen to measure the “distortion” of image curves.

Analytic functions mapping disks and half-planes onto disks and half-
planes, disks onto the interior of ellipses, etc., have previously been con-
structed. The major result of this chapter, known as the Riemann mapping
theorem, tells us that there is nearly always an analytic function that maps a
given simply connected domain onto another given simply connected domain.
This is a very powerful result and is used in a wide range of mathematical set-
tings. Our method of proof relies on normal families, a concept that enables us
to extract limit functions from families of functions. Recall how we previously
had extracted limit points from sequences of points (Bolzano–Weierstrass the-
orem).

11.1 Conformal Mappings

Any straight line in the plane that passes through the origin may be parame-
terized by σ(s) = seiα, where s traverses the set of real numbers and α is the
angle−measured in radians−between the positive real axis and the line. More
generally, a straight line passing through the point z0 and making an angle α
with the real axis can be expressed as σ(s) = z0 + seiα, s real.

Suppose now that a function f is analytic on a smooth (parameterized)
curve z(t), t ∈ [a, b]. Then the image of z(t) under f is also a smooth curve
whose derivative is given by f ′(z(t))z′(t). A smooth curve is characterized
by having a tangent at each point. So, we interpret z′(t) as a vector in the
direction of the tangent vector at the point z(t). Our purpose is to compare
the inclination of the tangent to the curve at a point with the inclination of
the tangent to the image curve at the image of the point.
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Let z0 = z(t0) be a point on the curve z = z(t). Then the vector z′(t0) is
tangent to the curve at the point z0 and arg z′(t0) is the angle this directed
tangent makes with the positive x-axis. Suppose that w = w(t) = f(z(t)),
with w0 = f(z0). For any point z on the curve other than z0, we have the
identity

w − w0 =
f(z) − f(z0)

z − z0
(z − z0).

Thus,

arg(w − w0) = arg
f(z) − f(z0)

z − z0
+ arg(z − z0) ( mod 2π ), (11.1)

where it is assumed that f(z) �= f(z0) so that (11.1) has meaning. Note that
arg(z− z0) is the angle in the z plane between the x axis and the straight line
passing through the points z and z0, while arg(w − w0) is the angle in the w
plane between the u axis and the straight line passing through the points w
and w0. Hence as z approaches z0 along the curve z(t), arg(z−z0) approaches
a value θ, which is the angle that the tangent to the curve z(t) at z0 makes
with the x axis. Similarly, arg(w − w0) approaches a value φ, the angle that
the tangent to the curve f(z(t)) at w0 makes with the u axis.

Suppose f ′(z0) �= 0 so that arg f ′(z0) has meaning. Then taking limits in
(11.1), we find (mod 2π) that

φ = arg f ′(z0) + θ, or arg w′(t0) = arg f ′(z0) + arg z′(t0). (11.2)

That is, the difference between the tangent to a curve at a point and the
tangent to the image curve at the image of the point depends only on the
derivative of the function at the point (see Figure 11.1).

For instance, consider f(z) = z2. Then f ′(z) �= 0 on C \{0}. Choose z0 =
1 + i. Then f ′(z0) = 2(1 + i) so that

arg f ′(z0) = (π/4) + 2kπ.

Figure 11.1. The direction of the tangent line at z(t)
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To verify the angle of rotation of a particular curve, we consider a simple
curve C passing through z0:

C : z(t) = t(1 + i), t ∈ R.

Clearly, π/4 is the angle which the curve C makes with the x axis. The image
of C under f(z) = z2 = (x2 − y2) + i(2xy) is given by w(t) = 0 + 2t2i. Thus,
the angle of rotation at 1 + i is π/2 which corresponds to the case k = 0.

If two smooth curves intersect at a point, then the angle between these
two curves is defined as the angle between the tangents to these curves at the
point. We can now state

Theorem 11.1. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Let C1 : z1(t)
and C2 : z2(t) be smooth curves in the z plane that intersect at z0 =: z1(t0) =:
z2(t0), with C ′

1 : w1(t) and C ′
2 : w2(t) the images of C1 and C2, respectively.

Then the angle between C1 and C2 measured from C1 to C2 is equal to the
angle between C ′

1 and C ′
2 measured from C ′

1 to C ′
2.

Proof. Let the tangents to C1 and C2 make angles θ1 and θ2, respectively, with
the x axis (see Figure 11.2). Then the angle between C1 and C2 is θ2 − θ1.

Figure 11.2. The curves C1 and C2 intersect at angle α

According to (11.2), the angle between C ′
1 and C ′

2, which is the angle between
the tangent vectors f ′(z0)z′1(t0) and f ′(z0)z′2(t0), of the image curves is

θ2 + arg f ′(z0) − (θ1 + arg f ′(z0) ) = θ2 − θ1,

and the theorem is proved.

A function that preserves both angle size and orientation is said to be
conformal. Theorem 11.1 says that an analytic function is conformal at all
points where the derivative is nonzero. We have already discussed a number
of examples of conformal maps without referring to the name “conformal”.
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For instance, f(z) = ez maps vertical and horizontal lines into circles and
orthogonal radial rays, respectively.

A function that preserves angle size but not orientation is said to be isog-
onal. An example of such a function is f(z) = z. To illustrate, z maps the
positive real axis and the positive imaginary axis onto the positive real axis
and the negative real axis respectively (see Figure 11.3). Although the two
curves intersect at right angles in each plane, a “counterclockwise” angle is
mapped onto a “clockwise” angle.

Figure 11.3.

Suppose f(z) is analytic at z0 and f ′(z0) �= 0. When z is near z0, there is
an interesting relationship concerning the distance between the points z and
z0 and the distance between their images. Note that

f(z) = f(z0) + f ′(z0)(z − z0) + ε(z)(z − z0)

where ε(z) → 0 as z → z0. Thus for z close to z0,

f(z) ≈ f ′(z0)z + (−f ′(z0)z0 + f(z0))

so that we may approximate f(z) by the linear function. Also,

|f(z) − f(z0)| ≈ |f ′(z0)| |z − z0| . (11.3)

In view of (11.3), “small” neighborhoods of z0 are mapped onto roughly the
same configuration, magnified by the factor |f ′(z0)|, see Figure 11.4. Hence,
f ′(z0) plays two roles in determining the geometric character of the image.
According to (11.2), arg f ′(z0) measures the rotation; according to (11.3),
|f ′(z0)| measures (for points nearby) the magnification or distortion of the
image.

An interesting comparison can now be made between the derivatives of real
and complex functions. For real differentiable functions, the nonvanishing of
the derivative is sufficient to guarantee that the function is one-to-one on an
interval. This is not the case for complex functions on a domain. Even though
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Figure 11.4.

the derivative of the entire function ez never vanishes, we have ez = ez+2πi

for all z. Similarly, the entire function f(z) = z2 is conformal on C \{0}.
However, it is geometrically intuitive (Figure 11.4) that the nonvanishing of
a derivative implies, at least locally, that the function is one-to-one. We now
show this formally in the following form which gives a sufficient condition for
the existence of a local inverse.

Theorem 11.2. If f(z) is analytic at z0 with f ′(z0) �= 0, then f(z) is one-
to-one in some neighborhood of z0.

Proof. Since f ′(z0) �= 0 and f ′(z) is continuous at z0, there exists a δ > 0
such that

|f ′(z) − f ′(z0)| <
|f ′(z0)|

2
for all |z| < δ.

Let z1 and z2 be two distinct points in |z| < δ, and γ be a line segment
connecting z1 and z2. Set φ(z) = f(z) − f ′(z0)z so that |φ′(z)| < |f ′(z0)|/2
for all |z| < δ. Now we have

|φ(z2) − φ(z1)| =
∣∣∣∣
∫

γ

φ′(z) dz

∣∣∣∣ < (|f ′(z0)|/2)|z2 − z1|,

or equivalently,

|f(z2) − f(z1) − f ′(z0)(z2 − z1)| < (|f ′(z0)|/2)|z2 − z1|.

Thus, by the triangle inequality, we obtain

|f(z2) − f(z1)| > (|f ′(z0)|/2)|z2 − z1| > 0.

That is, f(z) is one-to-one in |z| < δ .
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The vanishing of a derivative does not preclude the possibility of a real
function being one-to-one. Although the derivative of f(x) = x3 is zero at the
origin, the function is still one-to-one on the real line. That this cannot occur
for complex functions is seen by

Theorem 11.3. If f(z) is analytic and one-to-one in a domain D, then
f ′(z) �= 0 in D, so that f is conformal on D.

Proof. If f ′(z) = 0 at some point z0 in D, then

f(z) − f(z0) =
f ′′(z0)

2!
(z − z0)2 + · · ·

has a zero of order k (k ≥ 2) at z0. Since zeros of an analytic function are
isolated, there exists an r > 0 so small that both f(z)− f(z0) and f ′(z) have
no zeros in the punctured disk 0 < |z − z0| ≤ r. Let g(z) := f(z) − f(z0),
C = {z : |z − z0| = r} and

m = min
z∈C

|g(z)|.

Then, g has a zero of order k (k ≥ 2) and m > 0. Let b ∈ C be such that
0 < |b − f(z0)| < m. Then, as m ≤ |g(z)| on C,

|f(z0) − b| < |g(z)| on C.

It follows from Rouche’s theorem that g(z) and

g(z) + (f(z0) − b) = f(z) − b

have the same number of zeros inside C. Thus, f(z)− b has at least two zeros
inside C. Observe that none of these zeros can be at z0. Since f ′(z) �= 0 in the
punctured disk 0 < |z − z0| ≤ r, these zeros must be simple and so, distinct.
Thus, f(z) = b at two or more points inside C. This contradicts the fact that
f is one-to-one on D.

We sum up our results for differentiable functions. In the real case, the
nonvanishing of a derivative on an interval is a sufficient but not a necessary
condition for the function to be one-to-one on the interval; whereas in the
complex case, the nonvanishing of a derivative on a domain is a necessary but
not a sufficient condition for the function to be one-to-one on the domain.

An analytic function f : D → C is called locally bianalytic at z0 ∈ D
if there exists a neighborhood N of z0 such that restriction of f from N
onto f(N) is bianalytic. Clearly, a locally bianalytic map on D need not be
bianalytic on D, as the example f(z) = zn (n > 2) on C \{0} illustrates.

Combining Theorem 11.2 and Theorem 11.3 leads to the following criterion
for local bianalytic maps.

Theorem 11.4. Let f(z) be analytic in a domain D and z0 ∈ D. Then f is
bianalytic at z0 iff f ′(z0) �= 0.
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A sufficient condition for an analytic function to be one-to-one in a simply
connected domain is that it be one-to-one on its boundary. More formally, we
have

Theorem 11.5. Let f(z) be analytic in a simply connected domain D and on
its boundary, the simple closed contour C. If f(z) is one-to-one on C, then
f(z) is one-to-one in D.

Proof. Choose a point z0 in D such that w0 = f(z0) �= f(z) for z on C.
According to the argument principle, the number of zeros of f(z)−f(z0) in D
is given by (1/2π)
C {f(z) − f(z0)}. By hypothesis, the image of C must be a
simple closed contour, which we shall denote by C ′ (see Figure 11.5). Thus the
net change in the argument of w − w0 = f(z) − f(z0) as w = f(z) traverses
the contour C ′ is either +2π or −2π, according to whether the contour is
traversed counterclockwise or clockwise. Since f(z) assumes the value w0 at
least once in D, we must have

1
2π


C {f(z) − f(z0)} =
1
2π


C {w − w0} = 1.

That is, f(z) assumes the value f(z0) exactly once in D.

Figure 11.5.

This proves the theorem for all points z0 in D at which f(z) �= f(z0)
when z is on C. If f(z) = f(z0) at some point on C, then the expression

C {f(z) − f(z0)} is not defined. We leave for the reader the completion of
the proof in this special case.

In the proof of Theorem 11.1, we relied on the nonvanishing of the deriva-
tive. In Theorem 11.2, we see that every analytic function is locally one-to-one
at points where the derivative is nonvanishing. More generally, it can be shown
that if f is analytic at z0 and f ′ has a zero of order k at z0, then f is locally
(k + 1)-to-one. For example, if f(z) = z2, then f ′(z) has a zero of order 1 at
the origin and hence, it is two-to-one in any neighborhood of the origin.
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We now examine the behavior of an analytic function in a neighborhood
of a critical point, a point where the derivative vanishes. First we note that
the angle of intersection of two smooth curves at a critical point of an analytic
function is not the same as the angle of intersection of their images under f . If
f(z) is analytic and f ′(z) has a zero of order k− 1 at z = z0, then f (j)(z) = 0
for j = 1, · · · , k − 1 and so we may write

f(z) = f(z0) + ak(z − z0)k + ak+1(z − z0)k+1 + · · · .

Thus, f(z) − f(z0) = (z − z0)kg(z), where g(z) is analytic at z0 and g(z0) =
ak �= 0. Consequently,

arg[f(z) − f(z0)] = k arg(z − z0) + arg g(z). (11.4)

Suppose θ is the angle that the tangent to a smooth curve C at z0 makes with
the x axis, and φ is the angle that the tangent to the image C ′ of the curve
C at f(z0) makes with the u axis. If z approaches z0 along the curve C, then
w = f(z) approaches w0 = f(z0) along the curve C ′, and so (11.4) yields

φ = kθ + arg g(z0). (11.5)

Observe that (11.5) reduces to (11.2) in the special case when k = 1. In
general, the tangent to an image curve depends on the tangent to the original
curve as well as on the order and argument of the first nonzero derivative at
the point in question. Just as (11.2) led to Theorem 11.1, so (11.5) leads to

Theorem 11.6. Suppose f(z) is analytic at z0, and that f ′(z) has a zero of
order k − 1 at z0. If two smooth curves in the domain of f intersect at an
angle θ, then their images intersect at an angle kθ.

Proof. Suppose that the tangents to the two curves make angles θ1 and θ2

with respect to the real axis. Then θ = θ2 − θ1 is the angle between the two
curves. According to (11.5), the angle φ between their images is given by

φ = kθ2 + arg g(z0) − (kθ1 + arg g(z0)) = kθ, g(z0) =
f (k)(z0)

k!
.

Combining Theorems 11.1 and 11.6, we see that an analytic function is
conformal at a point if and only if it has a nonzero derivative at the point.
Thus, an analytic function f is conformal on a domain D iff f ′(z) �= 0 on D.

It now pays to reexamine bilinear transformations, studied in Chapter 3,
from a conformal mapping point of view. Recall that the transformation

w = f(z) =
az + b

cz + d
(ad − bc �= 0) (11.6)

represents a one-to-one continuous mapping from the extended plane onto
itself, with f(−d/c) = ∞ and f(∞) = a/c. Since f ′(z) �= 0 (ad − bc �= 0), the
mapping is conformal for all finite z, z �= −d/c.
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As we have seen, a circle or a straight line is mapped onto either a circle
or a straight line, depending on which point is mapped onto the point at ∞.
For instance, the inversion transformation w = 1/z maps straight lines not
passing through the origin onto circles. In particular, the lines y = x + 1 and
y = −x + 1 are mapped, respectively, onto the circles(

u +
1
2

)2

+
(

v +
1
2

)2

=
(

1√
2

)2

and
(

u − 1
2

)2

+
(

v +
1
2

)2

=
(

1√
2

)2

.

At first glance, Figure 11.6 is somewhat misleading. It shows a pair of straight
lines that intersect at one point being mapped onto a pair of circles that
intersect at two points. It should not be forgotten, however, that these straight
lines also intersect at ∞. For both lines, the point (0, 1) is mapped onto the
point (0,−1) while the point at ∞ is mapped onto the origin. The two lines
intersect at right angles at (0, 1) as do the two circles at (0,−1). This is in
harmony with Theorem 11.1.

Figure 11.6.

But at what angle do the two lines intersect at ∞? We need the following
definition: Two smooth curves in the extended plane are said to intersect at
an angle α at ∞ if their images under the transformation w = 1/z intersect
at an angle α at the origin. Since the two circles in Figure 11.6 intersect at
right angles at the origin, the lines y = x+1 and y = −x+1 intersect at right
angles at ∞.

With this definition, we can show that all transformations of the form
(11.6) are conformal at ∞. There are two cases to consider.

Case 1: Let c �= 0. The behavior of f at ∞ is determined from the behavior
of f(1/z) at 0 in (11.6). Thus we consider

g(z) = f

(
1
z

)
=

a/z + b

c/z + d
=

bz + a

dz + c
.

Since g′(0) = (bc− ad)/c2 �= 0, it follows that g(z) is conformal at ζ = 0. But
this means that f(z) is conformal at z = ∞.



388 11 Conformal Mapping and the Riemann Mapping Theorem

Case 2: Let c = 0. Then (11.6) is linear, and maps z = ∞ onto w = ∞.
So we need to consider the expression h(z) = 1/f(1/z) in (11.6):

w = h(z) =
dz

bz + a
.

Since h′(0) = d/a �= 0, h(z) is conformal at z = 0; that is, f(z) is conformal at
z = ∞. Hence, a bilinear transformation is a one-to-one conformal mapping
of the extended plane onto itself.

Recall from Chapter 4 that the exponential function ez maps lines parallel
to the y axis onto circles centered at the origin and lines parallel to the x axis
onto rays emanating from the origin. From elementary geometry we know that
these two image curves must intersect at right angles (see Figure 11.7).

Figure 11.7.

Finally, consider the function w = cos z, which maps lines parallel to the
y axis onto ellipses and lines parallel to the x axis onto hyperbolas. Accord-
ing to Theorem 11.1, these conic sections must intersect at right angles (see
Figure 11.8).

Figure 11.8.
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Questions 11.7.

1. What is meant by a tangent to a point on a straight line?
2. Was it necessary to require the curves in Theorem 11.1 to be smooth?
3. Can nonanalytic functions be conformal?
4. What kind of functions are isogonal?
5. Why does the derivative play such a central role?
6. If a function is one-to-one in some neighborhood of each point in a

domain, why does this not mean that the function is one-to-one in the
domain?

7. If f is conformal on a domain D, is f always one-to-one on D?
8. If f is conformal on a domain D which is symmetric with respect to the

real axis, is f(z) conformal on D?
9. What is the relationship between conformal and one-to-one?

10. At what angle do parallel lines intersect at ∞?
11. How might we define a function to be analytic at ∞?
12. Is the sum of conformal maps conformal? The product? The composi-

tion?

Exercises 11.8.

1. Given a complex number z0 and an ε > 0, show that there exists a
function f(z) analytic at z0 with f ′(z0) �= 0 and such that f(z) is not
one-to-one for |z − z0| < ε. Does this contradict Theorem 11.2?

2. Show that z2 is one-to-one in a domain D if and only if D is contained
in a half-plane whose boundary passes through the origin.

3. Find points at which the mapping defined by f(z) = nz + zn (n ∈ N) is
not conformal.

4. Prove that two smooth curves intersect at an angle α at ∞ if and only
if their images under stereographic projection (see Section 2.4) intersect
at an angle α at the north pole.

5. Show that f(z) and f(z) are both isogonal at points where f(z) is
analytic with nonzero derivative.

6. If two straight lines are mapped by a bilinear transformation onto circles
tangent to each other, show that the two lines must be parallel. Is the
converse true?

7. Find the radius of the largest disk centered at the origin in which w = ez

is one-to-one. Is the radius different if the disk is centered at an arbitrary
point z0?

8. For f(z) = ez, find arg f ′(z). Use this to verify that lines parallel to the
y axis and x axis map, respectively, onto circles and rays.

9. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Prove that a “small”
rectangle containing z0 and having area A is mapped onto a figure whose
area is approximately |f ′(z0)|2A.

10. Either directly or by making use of Theorem 11.5, show that the function
w = zn maps the ray arg z = θ (0 ≤ θ < 2π/n) onto the ray arg z = nθ.
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11. If f(z) is nonconstant and analytic in a domain D, show that f ′(z) = 0
for only a countable number of points in D. Thus conclude that f(z)
is locally one-to-one and conformal at all but a countable number of
points in D.

12. Show that f(z) = z + 1/z is conformal except at z = ±1. With this in
mind, review its mapping properties from Chapter 3.

11.2 Normal Families

We have previously seen significant differences between pointwise and uniform
continuity as well as between pointwise and uniform convergence. Once again
we encounter the contrast between local and global properties. This time, we
shall require a uniformity to hold over a set consisting of a family of functions.

A family F of functions is said to be uniformly bounded on a set A if there
exists a real number M such that |f(z)| ≤ M for all f ∈ F and all z ∈ A.
Certainly the uniform boundedness of a family implies that each member
of the family is bounded. On the other hand, each member of the sequence
{fn(z)} of functions fn(z) = nz is bounded in the disk |z| ≤ R, but there is
no bound that works for every member of the family.

A family F of functions is said to be locally uniformly bounded on a set A
if to each z ∈ A there corresponds a neighborhood in which F is uniformly
bounded. The sequence fn(z) = 1/(1− zn) is locally uniformly bounded, but
not uniformly bounded in the disk |z| < 1. We have the following characteri-
zation:

Theorem 11.9. A family F of functions is locally uniformly bounded in a
domain D if and only if F is uniformly bounded on each compact subset
of D.

Proof. Let F be locally uniformly bounded and suppose K is a compact subset
of D. For each point in K, choose a neighborhood in which F is uniformly
bounded. This provides an open cover for K. According to the Heine–Borel
theorem, there exists a finite subcover of K. That is, there are finitely many
zi ∈ K and εi > 0 such that K ⊂ ⋃n

i=1 N(zi; εi), where |f(z)| ≤ Mi for all
f ∈ F and all z ∈ N(zi; εi). Then F is uniformly bounded on K, having for
a bound M = max{M1, M2, . . . ,Mn}.

The converse is immediate from the fact that the closure of a neighborhood
of a point is a compact set.

By restricting ourselves to locally uniformly bounded families of analytic
functions, we can obtain additional information.

Theorem 11.10. Suppose F is a family of locally uniformly bounded ana-
lytic functions in a domain D. Then the family F (n), consisting of the nth
derivatives of all functions in F , is also locally uniformly bounded in D.
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Proof. It suffices to prove this when n = 1, since then the result may be reap-
plied successively to each new class. Suppose for some z0 in D that |f(z)| ≤ M
for each f ∈ F and all z inside or on the circle C : |z − z0| = r contained in
D. Then for z in the smaller disk |z − z0| ≤ r/2, Cauchy’s integral formula
yields

f ′(z) =
1

2πi

∫
C

f(ζ)
(ζ − z)2

dζ

and so, as |ζ − z| ≥ |ζ − z0| − |z − z0| ≥ r − r/2 = r/2,

|f ′(z)| ≤ 1
2π(r/2)2

∫
C

|f(ζ)| |dζ| ≤ 4M

r
.

This shows that the family F ′ is locally uniformly bounded at z0. Since z0

was arbitrary, the proof is complete.

We next extend the concept of uniform continuity. A family F of functions
is said to be equicontinuous in a region R if for every ε > 0 there exists a
δ > 0 such that |f(z1) − f(z0)| < ε for all f ∈ F and all points z0, z1 ∈ R
satisfying |z1−z0| < δ. Observe that each member of an equicontinuous family
is uniformly continuous. That is, for an equicontinuous family we can find a
δ = δ(ε) that works for all points in the set as well as for all functions in the
family.

It is possible for each member of a family to be uniformly continuous
without the family being equicontinuous. To see this, set fn(z) = nz. Each fn

is uniformly continuous on |z| ≤ R because

|fn(z1) − fn(z0)| = n|z1 − z0| < ε

whenever |z1 − z0| < ε/n = δ. But a δ cannot be chosen that works for all n.
Hence the sequence {nz} is not equicontinuous on |z| ≤ R.

There is an important relationship between locally uniformly bounded and
equicontinuous families of analytic functions.

Theorem 11.11. If F is a locally uniformly bounded family of analytic func-
tions in a domain D, then F is equicontinuous on compact subsets of D.

Proof. We prove the theorem in the special case that K is a closed disk con-
tained in D. The proof for general compact subsets of D is similar to the
proof of Theorem 11.9, and is left for the reader. By Theorem 11.10, the fam-
ily F ′, consisting of the derivatives of functions in F , is also locally uniformly
bounded. In view of Theorem 11.9. we may therefore assume that |f ′(z)| ≤ M
for all f ∈ F and all z ∈ K. Then for z0, z1 ∈ K, we have

|f(z1) − f(z0)| =
∣∣∣∣
∫ z1

z0

f ′(z) dz

∣∣∣∣ ≤ M |z1 − z0|,

where the path from z0 to z1 is taken to be the straight line segment. By
choosing δ = ε/M (ε arbitrary), we see that the family F is equicontinuous
on the disk K.
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Remark 11.12. The converse of Theorem 11.11 is not true. The sequence
fn(z) = z + n is equicontinuous on all compact subsets of the plane. In fact
fn(z1) − fn(z0) = z1 − z0 for each n, so that δ = ε may be chosen. However,
{fn(z)} is not uniformly bounded in any neighborhood in C. •

In Chapter 2, we showed that every bounded sequence of complex num-
bers contains a convergent subsequence. Our goal in this section is to obtain
analogous results for sequences of functions. It is not clear, at this point, what
form of convergence is most reasonable or most applicable. To help clarify the
situation, we need the following definition. A family F of functions is said to
be normal in a domain D if every sequence {fn} in F contains a subsequence
{fnk

} that converges uniformly on each compact subset of D.
As an example, the family consisting of the sequence {zn} is normal in

the domain |z| < 1. In fact, the sequence itself converges uniformly to zero
on every compact subset of |z| < 1. Note, however, that neither the sequence
nor any subsequence converges uniformly in the whole domain.

Just as a bounded sequence may contain different subsequences that con-
verge to different limits, so may a normal family contain different sequences
that converge uniformly on compact subsets to different functions. To illus-
trate, set

fn(z) =
{

zn if n odd,
1 − zn if n even.

Then {f2n+1} converges uniformly to 0 and {f2n} converges uniformly to 1
on all compact subsets of |z| < 1.

A set of points E is said to be dense in a set A if every neighborhood of each
point in A contains points of E. Every domain in the plane contains a dense
sequence of points (for example, the set of points in the domain having both
coordinates rational is countable, and so may be expressed as a sequence).
Before proving the major result of this section, we need the following:

Lemma 11.13. Suppose {fn(z)} is a sequence of analytic functions that is
locally uniformly bounded in a domain D. If {fn(z)} converges at all points
of a dense subset of D, then it converges uniformly on each compact subset
of D.

Proof. Given a compact set K contained in D, we wish to show that the
sequence {fn(z)} converges uniformly on K. By Theorem 11.11, {fn(z)} is
equicontinuous on K. Thus to each ε > 0, there corresponds a δ > 0 such that

|fn(z) − fn(z′)| < ε/3 for |z − z′| < δ, (11.7)

where z, z′ are any points in K and n is arbitrary. Since K is compact, finitely
many, say p, neighborhoods of radius δ/2 cover K. In each of these p neigh-
borhoods, choose a point zk (k = 1, 2, . . . , p) from the dense subset of K, at
which {fn} converges. Next choose n and m large enough so that
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|fn(zk) − fm(zk)| < ε/3 for k = 1, 2, . . . , p. (11.8)

In view of (11.7) and (11.8), we see that, to each z in K, there corresponds a
zk in K such that

|fn(z) − fm(z)| ≤ |fn(z) − fn(zk)| + |fn(zk) − fm(zk)| + |fm(zk) − fm(z)|
< ε.

Hence the sequence {fn(z)} is uniformly Cauchy on K, and must therefore
converge uniformly on K.

Note the lemma concludes that {fn(z)} is a normal family in D. We will
now show, by a diagonalization process, that this conclusion is true without
the assumption that the sequence converges on a dense subset.

Theorem 11.14. (Montel’s Theorem) If F is a locally uniformly bounded
family of analytic functions in a domain D, then F is a normal family in D.

Proof. Given a sequence {fn} of functions in F , we must show that some
subsequence of {fn} converges uniformly on compact subsets. Choose any
sequence of points {zk} that is dense in D. According to Lemma 11.13, it
suffices to construct a subsequence of {fn} that converges at each point of
the sequence {zk}. By hypothesis, the sequence {fn(z1)} of complex numbers
is bounded. Hence by the Bolzano–Weierstrass property (see Theorem 2.17),
there exists a subsequence of {fn}, which we shall denote by {fn,1}, that
converges at z1. But the sequence of {fn,1(z2)} of points is also bounded. Thus
there is a subsequence {fn,2} of {fn,1} that converges at z2. Since {fn,2} is a
subsequence of {fn,1}, it must also converge at z1.

Continuing the process, for each positive integer m, we obtain the mth
subsequence {fn,m} of {fn} so that it converges at z1, z2, . . . , zm. As seen in
the chart below,

f1,1(z), f2,1(z), f3,1(z), . . . fm,1(z), . . .

f1,2(z), f2,2(z), f3,2(z), . . . fm,2(z), . . .

f1,3(z), f2,3(z), f3,3(z), . . . fm,3(z), . . .

...
...

...
...

...

f1,m(z), f2,m(z), f3,m(z), . . . fm,m(z), . . .

...
...

...
...

...

the mth sequence of complex functions converges at zm and all preceding
points of the sequence {zk}. Now consider the sequence {fn,n(z)}, which makes
up the diagonal of the chart. For each fixed m, the sequence {fn,n(zm)},
n ≥ m, is a subsequence of the convergent sequence {fn,m(zm)}, and hence
converges. Therefore, {fn,n(z)} is a subsequence of {fn} that converges at all
points of the sequence {zk}. This completes the proof.
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The Bolzano–Weierstrass theorem guarantees the existence of a limit point
for every bounded infinite set of points, and consequently the existence of a
convergent subsequence for every bounded sequence. Montel’s theorem can be
viewed as an “analytic function” analog to Bolzano’s theorem. It guarantees,
in some sense, the existence of a convergent sequence of functions associated
with every locally uniformly bounded family of analytic functions.

Carrying the analogy one step further, both theorems suffer from the same
deficiency. The limit point of Bolzano’s theorem need not be a member of the
set, while the convergent function of Montel’s need not be a member of the
normal family. For example, the sequence {zn} is a normal family in |z| < 1
because it converges uniformly to 0 on all compact subsets of |z| < 1. However,
0 is not a member of the family {zn}.

Recall that a bounded set that contains all its limit points is compact. This
leads to the following definition. A normal family F of functions is said to be
compact if the uniform limits of all sequences converging in F are themselves
members of F .

Example 11.15. The family F of functions of the form

f(z) = 1 +
∞∑

n=1

anzn

that are analytic with positive real part in the disk |z| < 1 is a compact,
normal family. By Theorem 10.42, all functions f ∈ F satisfy the inequality

|f(z)| ≤ 1 + |z|
1 − |z| (|z| = r < 1).

Hence F is locally uniformly bounded and, by Montel’s theorem, is normal.
To show compactness, suppose a sequence {fn} of functions in F converges
uniformly to a function g. We wish to show that g ∈ F . By Theorem 8.16, g is
analytic in |z| < 1. Since fn(0) = 1 for every n, g(0) = 1. Since Re fn(z) > 0
for every n, Re g(z) ≥ 0 for |z| < 1. But then by the open mapping theorem,
we must have Re g(z) > 0 for |z| < 1. Thus g ∈ F , and F is compact. •
Questions 11.16.

1. What kinds of families of functions are locally uniformly bounded but
not uniformly bounded?

2. Is the family of polynomials locally uniformly bounded on some set?
3. If F is a uniformly bounded family of analytic functions, is F (n) also

uniformly bounded?
4. If a family of functions is uniformly bounded at each point in a domain,

is the family locally uniformly bounded?
5. Where, in the proof of Theorem 11.7, did we use the fact that the set

K was a disk?
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6. What is an important distinction between a dense sequence and a dense
set?

7. What kinds of normal families have more than one subsequential limit
function?

8. Can a normal family have infinitely many subsequential limit functions?

Exercises 11.17.

1. Suppose that for each point in a domain D there corresponds a neigh-
borhood in which a family F is equicontinuous. Show that F is equicon-
tinuous on compact subsets of D. Is F equicontinuous in D?

2. Show that the sequence {nz} is not equicontinuous in any region.
3. If F is locally uniformly bounded family of analytic functions in a do-

main D, show that F ′, the family of functions consisting of the deriva-
tives of functions in F , is equicontinuous on compact subsets of D.

4. Suppose F is a normal family of analytic functions in the disk |z| < 1.
Let G be the family of functions of the form g(z) =

∫ z

0
f(ζ) dζ, where

f ∈ F . Show that G is normal in |z| < 1.
5. Show that the sequence {fn(z)} defined by

fn(z) =
{

zn if n odd
1 − zn if n even,

forms a normal family in the disk |z| < 1.
6. Show that the family of functions of the form f(z) =

∑∞
n=0 anzn, where

|an| ≤ n, is a compact normal family of analytic functions in the disk
|z| < 1.

7. Let F be the family consisting of all functions f(z) that are analytic in
a domain D with |f(z)| ≤ M in D. Show that F is a compact, normal
family in D.

11.3 Riemann Mapping Theorem

We have already discussed a number of examples of analytic functions between
various domains of the complex plane. In some cases, we have given complete
characterizations for mappings between certain domains such as disks and
half-planes. Also, we know from the open mapping theorem that nonconstant
analytic functions map domains into domains. Now, suppose D1 and D2 are
simply connected domains. Then there is almost always an analytic function
mapping D1 onto D2. We first discuss a “typical” exception. Suppose D1 is
the whole plane and D2 is the disk |z| < 1. There can be no function analytic
in the plane (entire) that maps onto the (bounded) disk |z| < 1, for, according
to Liouville’s theorem, constant functions are the only entire functions whose
images are contained in the disk. Our major theorem of this section says
that a one-to-one analytic mapping exists between any two simply connected
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domains, neither of which is the whole plane. Before proving this remarkable
(existence) result, we shall need some preliminaries concerning univalent (a
fancy term for one-to-one) functions.

Theorem 11.18. Suppose {fn(z)} is a sequence of analytic, univalent func-
tions defined in a domain D and converging uniformly on each compact sub-
set of D to a nonconstant function f(z). Then f(z) is analytic and univalent
in D.

Proof. The analyticity of f follows from Theorem 8.16. To prove the univa-
lence of f , assume there are distinct points z0, z1 in D for which f(z0) =
f(z1) = a. We can find r > 0 (e.g., r < |z0 − z1|/2) so small that the closed
disks centered at z0 and z1 with radius r are mutually disjoint and are con-
tained in D. Assume further that f(z) �= a on the circles C0 : |z− z0| = r and
C1 : |z − z1| = r. This is possible because f is nonconstant. Let

m = min
z∈C0∪C1

|f(z) − a|.

Now choose n sufficiently large so that |fn(z)− f(z)| < m on C0 ∪C1. So, on
C0 ∪ C1,

|f(z) − a)| > m > |fn(z) − f(z)| for large n.

By Rouche’s theorem, the function

fn(z) − a = (fn(z) − f(z)) + (f(z) − a)

has at least one zero inside C0 and at least one zero inside C1. This contradicts
the univalence of fn(z) in D.

Note that it is possible for the uniform limit of a sequence of univalent
functions to be constant. For example, the univalent sequence fn(z) = z/n
converges uniformly to f(z) = 0 on any compact subset of C. Thus the uniform
limit of a sequence of univalent functions need not be univalent.

Theorem 11.19. Suppose f(z) is analytic and univalent in a domain D, and
that g(z) is analytic and univalent on the image of D under f(z). Then the
composition function g(f(z)) is analytic and univalent in D.

Proof. The analyticity of g(f(z)) follows from Theorem 5.6. To show univa-
lence, suppose

g(f(z0)) = g(f(z1)) for z0, z1 ∈ D.

By the univalence of g, we have f(z0) = f(z1). From the univalence of f ,
z0 = z1 and the theorem is proved.

Theorem 11.20. Suppose f , mapping a domain D1 onto D2, is analytic and
univalent in D1. Then the inverse function g, defined by g(f(z)) = z for all
z ∈ D1, is an analytic and univalent mapping from D2 onto D1.
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Proof. The univalence of g is an immediate consequence of the univalence of
f . To show analyticity, fix a point w0 ∈ D2. Then w0 = f(z0) for a unique
z0 ∈ D1. Setting w = f(z), we have

g(w) − g(w0)
w − w0

=
z − z0

f(z) − f(z0)
. (11.9)

Since f maps open sets onto open sets (Theorem 9.55), g is continuous in
D2. Thus z → z0 as w → w0. By Theorem 11.3, f ′(z0) �= 0. Hence we may
take limits in (11.9) to obtain g′(w0) = g′(f(z0)) = 1/(f ′(z0)). Therefore g is
analytic in D2, and the theorem is proved.

If f and g are analytic and univalent in domains D1 and D2, respectively,
and map onto the disk |z| < 1, then g−1(f(z)) is an analytic and univalent
mapping from D1 onto D2 (see Figure 11.9).

Figure 11.9.

Thus the set of domains that may be mapped analytically and univalently
onto the interior of the unit disk can also be mapped analytically and univa-
lently onto one another.

Suppose f is analytic and univalent in D and maps onto |z| < 1. Are there
other functions with the same property? In general, there are infinitely many.
To see this, recall from Section 3.2 (see Theorem 3.21) that all functions of
the form

g(z) = eiα z − z0

1 − z0z
(|z0| < 1, α real) (11.10)

map the interior of the unit circle onto itself. Hence the functions g(f(z)) and
f(z) simultaneously map D onto |z| < 1. Our next result suggests conditions
for establishing a unique mapping function.

Given a domain D ⊆ C, we define the group of analytic automorphisms of
D as follows: If f : D → D is an analytic function that is one-to-one and onto,
then f(z) is called an analytic/holomorphic automorphism of D. That is, f(z)
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is called a conformal self-mapping of D. The set of all analytic automorphisms
of D form what is called an “automorphism group” (with composition as the
group operation) of D, and is denoted by Aut (D). The Schwarz lemma can
be used to describe the automorphism groups of the upper half-plane, and the
unit disk Δ (see also Theorems 3.18 and 3.21). It is easy to see that

Aut a(D) = {f ∈ Aut (D) : f(a) = a}

forms a subgroup of the group Aut (D). Our next result is a reformulation of
Theorem 3.21 in the language of automorphisms, but the new proof uses the
Schwarz lemma.

Theorem 11.21. We have

Aut (Δ) =
{

eiα

(
z − a

1 − az

)
: |a| < 1, 0 ≤ α ≤ 2π

}
.

In particular, Aut 0(Δ) := {f ∈ Aut (Δ) : f(0) = 0} = {eiαz : α real}.

Proof. Let a ∈ Δ, and

ϕa(z) =
a − z

1 − az
.

Obviously, ϕa is analytic for |z| < 1/|a| (|a| < 1), ϕa(Δ) ⊆ Δ, and ϕa(∂Δ) =
∂Δ. Moreover, ϕa is univalent on Δ and (ϕa)−1 = ϕa. Thus, ϕa ∈ Aut (Δ).
Also, the rotation eiθϕa(z) (θ ∈ R) belongs to Aut (Δ).

Conversely, let f ∈ Aut (Δ). Then there exists a b ∈ Δ such that f(0) = b.
Then F (z) defined by F = ϕb ◦ f is also analytic and univalent in Δ, F maps
Δ onto Δ, and F (0) = 0. By the Schwarz lemma,

|F (z)| ≤ |z| for z ∈ Δ.

Since F is analytic and one-to-one on Δ, F−1 exists on Δ. Moreover, F−1

is analytic and one-to-one on Δ with F−1(0) = 0. We may again apply the
Schwarz lemma to F−1 and obtain |F−1(w)| ≤ |w| for w ∈ Δ. If we take
w = F (z), we get

|z| ≤ |F (z)| for z ∈ Δ.

Hence, |F (z)| = |z|, and so F (z) = λz with |λ| = 1, or

ϕb(f(z)) = λz or f(z) = ϕb(λz).

The desired result follows.

Our next result suggests conditions for establishing a unique mapping
function.

Lemma 11.22. Suppose f(z) is analytic and univalent in |z| < 1 and maps
the disk onto itself. If f(0) = 0 and f ′(0) > 0, then f(z) = z.
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Proof. As Aut 0(Δ) := {f ∈ Aut (Δ) : f(0) = 0} = {eiαz : α real} and
f ′(0) > 0, the result follows.

Two domains D1 and D2 are said to be conformally equivalent if there
is a bijective analytic function mapping D1 onto D2. Both the existence and
method of finding it are two important components for conformal mappings.
We start with a couple of examples illustrating conformal mappings between
standard simply connected domains. It follows that conformally equivalent
domains are homeomorphic but not the converse.

Example 11.23. We are interested in showing that the upper half disk D =
{z : |z| < 1, Im z > 0} and the unit disk Δ = {z : |z| < 1} are conformally
equivalent.

Step 1: We consider

w1 = f1(z) =
1

1 − z
.

Then we know that f1 transforms the unit disk Δ onto the right half-plane
Re w1 > 1/2. Rewriting

w1 = f1(z) =
1 − z

|1 − z|2 =
1 − x + iy

|1 − z|2 ,

we see that Im w1 > 0 iff Im z > 0. Moreover, z = 1 is a pole of f1(z), the
segment [−1, 1] maps onto the half-line [1/2,∞) and the upper half circle
{z : |z| = 1, Im z > 0} onto the half-line {w1 : Rew1 = 1/2, Im w1 > 0}.
Therefore, f1 maps D onto D1 = {w1 : Rew1 > 1/2, Im w1 > 0}.

Step 2: The map w2 = f2(w1) = w1 − 1/2 maps the domain D1 onto the
first quadrant D2 = {w2 : Rew2 > 0, Im w2 > 0}.

Step 3: The map w3 = f3(w2) = w2
2 maps D2 onto the upper half-plane

H+ = {w3 : Imw3 > 0}.

Step 4: The map w = f4(w3) = w3−i
w3+i carries the upper half-plane H+ onto

the unit disk {w : |w| < 1}. Finally a map f with the desired property is a
composition

w = f(z) = (f4 ◦ f3 ◦ f2 ◦ f1)(z) = f4(f3(f2(f1(z))))

which gives

w = f(z) =
(1 + z)2 − 4i(1 − z)2

(1 + z)2 + 4i(1 − z)2
. •

Example 11.24. Let D = {z : |z| < 1, |z − 1/2| > 1/2}. Now we want to
find a conformal map of D onto the unit disk Δ. As we can see from the
picture, it suffices to focus on certain key points to understand the sequence
of mappings considered here. If w1 = 1/(1 − z), then z = 1 − 1/w1 and
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Figure 11.10. A conformal map of D onto the strip

{
|z| < 1 ⇐⇒ Re w1 > 1/2
|z − 1/2| > 1/2 ⇐⇒ Re w1 < 1.

Because of the basic property of Möbius transformations, it follows easily that
f1 maps D onto the strip D1 = {w1 : 1/2 < Re w1 < 1}. A similar explanation
may be provided for other mappings. Finally, the composition

w = f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z)

gives the formula which does the required job, where

w2 = f2(w1) = iπ(w1 − 1/2), w3 = f3(w2) = ew2 , f4(w3) =
w3 − i

w3 + i
. •

We are now ready to formally state and prove the Riemann mapping the-
orem which is a classical example of existence theorems.

Theorem 11.25. (Riemann Mapping Theorem) Suppose D is a simply
connected domain, other than the whole plane, and z0 is a point in D. Then
there exists a unique function f(z), analytic and univalent in D, which maps
D onto the disk |w| < 1 in such a manner that f(z0) = 0 and f ′(z0) > 0.

Proof. We first prove the uniqueness of the mapping function f . If g1 and g2

are two functions each of which maps D onto the unit disk |w| < 1 in the
prescribed manner, then h = g2 ◦ g−1

1 is an analytic and univalent mapping
of the unit disk |w| < 1 onto itself. Furthermore,

h(0) = g2(g−1
1 (0)) = g2(z0) = 0

and, because g′1(z0) > 0 and g′2(z0) > 0,

h′(0) = g′2(g
−1
1 (0))(g−1

1 )′(0) =
g′2(z0)
g′1(z0)

> 0.

Hence, by Lemma 11.22, h is the identity function. That is, g1(z) = g2(z) and
uniqueness is proved.
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To prove existence of the mapping function, we first show that there is an
analytic and univalent function mapping D into the disk |w| < 1. Since D is
not the whole plane C, there is a point a ∈ C \D. If there is actually a disk
|z − a| < ε outside of D, then |z − a| > ε for all points z in D. In this case,

w =
ε

z − a

is an analytic and univalent function that maps all points of D into the unit
disk |w| < 1. Thus, the proof follows if D is a bounded domain. However, if D
is unbounded, then it is possible that the complement of D does not contain
any disk. For instance, D might be the plane minus a ray from some point z0

to ∞. This kind of difficulty will be avoided by considering a branch of the
square root function, which maps a domain onto one “half” its size.

According to Corollary 7.52, if a ∈ C \D, then there exists an analytic
function φ : D → C, called analytic branch of (z−a)1/2 with φ2(z) = z−a so
that φ(z) =

√
z − a. Furthermore, φ(z) is univalent in D. For if φ(z1) = φ(z2)

for z1, z2 ∈ D, then

[φ(z1)]2 = [φ(z2)]2, i.e., z1 − a = z2 − a.

Now let D′ = φ(D). Then D′ is simply connected since D is simply con-
nected. Then the complement of D′ contains a disk. To see this, we will show
that points b and −b cannot simultaneously be in D′. For if they are, then
there exist two points z1 and z2 in D such that φ(z1) = b and φ(z2) = −b.
Now,

φ(z1) = −φ(z2) =⇒ [φ(z1)]2 = [φ(z2)]2

=⇒ z1 − a = z2 − a, i.e., z1 = z2

=⇒ b = −b, i.e., φ(z1) = 0 = φ(z2)
=⇒ z2 = a ∈ C \D,

contradicting the fact that z1 and z2 are distinct.
Next choose a point w0 ∈ D′ and an ε > 0 so that the disk |w−w0| < ε is

contained in D′. Then the disk |w + w0| < ε is contained in the complement
C \D′. Hence the function

ψ(w) =
ε

w + w0

maps D′ into the unit disk, because |w + w0| > ε for all w ∈ D′. Therefore,
the composition

f(z) = ψ(φ(z)) =
ε

φ(z) + w0

is analytic and univalent in D and maps D into the unit disk. By a suitable
bilinear transformation (fill in details!), we can transform this function into a
function f0(z) satisfying the additional conditions f0(z0) = 0 and f ′

0(z0) > 0.
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Let F denote the family of all analytic functions g : D → C such that g(z)
is univalent in D, g(z0) = 0, g′(z0) > 0, and satisfies |g(z)| < 1 for all z in D.
The family F is nonempty because f0(z) ∈ F . Certainly the function whose
existence we are determined to prove must also be in the family F . It will be
shown that the desired function has a larger derivative at z0 than any other
function in F . To show the existence of a function in F with a maximum
derivative at z0, we will rely on the theory of normal families.

Since the family F is locally uniformly bounded (in fact, uniformly
bounded) in D, it follows from Theorem 11.14 that F is a normal family.
Set

A = lub {g′(z0) : g ∈ F}.
Then, A > 0 because g′(z0) > 0 for each g ∈ F . But A may be infinite.
By the definition of A, there is a sequence {fn} of functions in F such that
f ′

n(z0) → A. By the normality of F , there exists a subsequence {fnk
} that

converges uniformly on the compact subsets of D to an analytic function
f(z). An application of Corollary 8.18 shows that f ′(z0) = A, so that A is
finite. Since f ′(z0) ≥ f ′

0(z0) > 0, the function f(z) is not constant in D. It
thus follows from Theorem 11.18 that f(z) is univalent and, consequently, a
member of F .

We shall now show that this f maps D onto the unit disk, and so it is
the required function. For the sake of obtaining a contradiction we suppose
that f(D) is not the whole unit disk |w| < 1. Then f(z) �= α for some α with
|α| < 1. By the definition of analytic branch of square roots, there exists an
analytic function F (z) in D so that

F (z)2 =
f(z) − α

1 − αf(z)
.

The univalence of F (z) follows from the univalence of f(z), and the inequal-
ity |F (z)| < 1 follows from the inequality |f(z)| < 1. However, F (z) is not
properly normalized. We therefore consider the function

G(z) =
|F ′(z0)|
F ′(z0)

F (z) − F (z0)
1 − F (z0)F (z)

,

which satisfies G(z0) = 0 and G′(z0) > 0, so that G(z) ∈ F . Moreover,

G′(z0) =
|F ′(z0)|

1 − |F (z0)|2
=

1 + |α|
2
√
|α|

A > A = f ′(z0),

contradicting the maximality of f ′(z0). Thus f(z) omits no values inside the
unit disk, and the proof is complete.

Remark 11.26. Since univalence in a domain guarantees a nonvanishing
derivative, the Riemann mapping theorem shows that any two simply con-
nected domains (neither of which is the plane) are conformally equivalent.
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In the proof of Theorem 11.25, we assumed that an analytic, univalent
function maps simply connected domains onto simply connected domains. In
elementary topology, it is proved that the one-to-one continuous image of a
simply connected domain cannot be multiply connected. Thus, we conclude
that no simply connected domain can be conformally equivalent to a multiply
connected domain. •
Remark 11.27. Recall that a bilinear transformation maps circles and
straight lines onto circles and straight lines. Hence any conformal mapping
of a domain, other than a disk or a half-plane, onto the interior of the unit
circle must be accomplished by a function other than a bilinear transfor-
mation. Furthermore, by the uniqueness property of the Riemann mapping
theorem, no univalent function other than a bilinear transformation can map
a disk or a half-plane onto the interior of the unit circle.

At this point, we must reflect on a sobering thought. The Riemann map-
ping theorem, like many existence theorems, has the drawback of not furnish-
ing much insight into the actual construction. Therefore, given two “unfa-
miliar” simply connected domains, we must plod along as before to develop
techniques for determining an appropriate mapping function. •
Remark 11.28. The mapping of the interior of an arbitrary polygon onto
the interior of the unit circle, whose existence is guaranteed by the theorem,
can be found explicitly. This is accomplished in several stages. The Schwarz–
Christoffel formula gives an analytic and univalent mapping of the upper
half-plane onto the interior of an arbitrary polygon. For a complete discussion
of the Schwarz–Christoffel transformation, we refer the reader to Nehari [N].
Composing the inverse of such a mapping with a bilinear transformation from
the upper half-plane onto the open unit disk (see Section 3.3) gives the desired
mapping. •
Example 11.29. Let f : Ω → Ω be analytic in a simply connected domain Ω
(�= C) having a fixed point in Ω. Then it can easily be shown that |f ′(a)| ≤ 1,
and if |f ′(a)| = 1, then f is actually a homeomorphism from Ω onto Ω.

The Riemann mapping theorem assures the existence of a bijective con-
formal map φ : Ω → Δ such that φ(a) = 0. Then we see that g defined
by

g(z) = φ ◦ f ◦ φ−1(z)

maps Δ into Δ and satisfies the hypothesis of the Schwarz lemma. Now, we
easily see that g′(0) = f ′(a) and so |f ′(a)| ≤ 1, because |g′(0)| ≤ 1. Moreover,

|f ′(a)| = 1 =⇒ |g′(0)| = 1
=⇒ g(z) = eiαz (by the Schwarz lemma)
=⇒ φ ◦ f ◦ φ−1(z) = eiαz

=⇒ f(z) = φ−1(eiαφ(z))
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which implies that f must be a bijective mapping from Ω onto Ω, because
φ : Ω → Δ and φ−1 : Δ → Ω are bijective maps. •
Questions 11.30.

1. Must the convergence be uniform in Theorem 11.18 in order for the
conclusion to be valid?

2. Are there conformal mappings from multiply connected domains onto
multiply connected domains?

3. If f(z) is analytic and conformal in a domain D1 and maps D1 onto D2,
are D1 and D2 conformally equivalent?

4. What other initial conditions could we have prescribed in the Riemann
mapping theorem to guarantee uniqueness?

5. Does there exist a one-to-one conformal mapping from the unit disk
onto the disk minus the origin?

6. If two domains are conformally equivalent, what can be said about their
boundaries?

7. Does there always exist an analytic function which maps a simply con-
nected domain Ω( �= C) into the unit disk |z| < 1?

8. Let Ω ( �= C) be a simply connected domain and let F be the set of all
one-to-one analytic functions which map Ω into the unit disk |z| < 1,
and a ∈ Ω. If f ∈ F and is not onto, is there a function g ∈ F such that
|g′(a)| > |f ′(a)|?

9. Are the plane C and the unit disk |z| < 1 conformally equivalent? Are
they homeomorphic?

10. Are the plane C and the upper half-plane Imw > 0 conformally equiv-
alent? Are they homeomorphic?

11. In the statement of the Riemann mapping theorem, why do we require
the domain D to be a proper subset of C? Does the theorem still hold
if we remove that assumption?

12. Does the proof of the Riemann mapping theorem use the fact that every
nonvanishing analytic function in a simply connected domain D admits
analytic square root function in D?

13. Where, in the proof of the Riemann mapping theorem, did we require
the domain to be simply connected?

14. Why was it necessary to first show that some function mapped the
domain into the unit disk?

15. Why does the function G(z), constructed in the proof of the Riemann
mapping theorem, work?

16. What is a conformal map between the upper half-plane H+ =
{z : Im z > 0} and C \ [0,∞)?

17. What is a conformal map between the right half-plane D1 =
{z : Re z > 0} and D2 = {z : |Arg z| < π/8}?

18. What is a conformal map between the strip D1 = {z : 0 < Im z < π/2}
and the upper half-plane H+?
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19. What is a conformal map between the strip D1 = {z : 0 < Im z < α}
and the upper half-plane H+?

20. What is a conformal map between the infinite strip |Re z| < π/2 and
the unit disk |w| < 1?

21. What is a conformal map between the unit disk |z| < 1 and C \ Δ?

Exercises 11.31.

1. Suppose f(z) is analytic at z0 with f ′(z0) �= 0. Show that there exist
neighborhoods U and V of z0 and f(z0), respectively, such that f(z) is
a univalent mapping from U onto V .

2. Show that the plane is not conformally equivalent to the upper half-
plane. More generally, show that the plane is only conformally equivalent
to itself.

3. Let D1 = {z : 0 < Re z, Im z < ∞} and D2 = {w : Imw > 0} be
the open first quadrant and the upper half-plane, respectively. By the
Riemann mapping theorem D1 and D2 are conformally equivalent. Show
that f(z) = z2 does this job.

4. Let D1 = {z : |Re z| < π/2} and D2 = {w : Rew > 0}. Show that
f : D1 → D2 given by f(z) = eiz is conformal.

5. Even though the interior of a square can be mapped conformally onto
the interior of a circle, show that no square can be mapped conformally
onto a circle.

6. Let D1 be the annulus 0 < r1 < |z| < R1 and D2 be the annulus
0 < r2 < |z| < R2. If

R1

r1
=

R2

r2
,

construct an analytic and univalent function that maps D1 onto D2.
7. Suppose D1 and D2 are conformally equivalent, and that D2 and D3 are

conformally equivalent. Show that D1 and D3 are conformally equiva-
lent.

11.4 The Class S
We continue our investigation of univalent functions—a specialized topics in
complex analysis. Analytically, a univalent function has a nonvanishing deriva-
tive (Theorem 11.3); geometrically, a univalent function maps simple curves
onto simple curves.

Functions that are both analytic and univalent have a nice property of
mapping simply connected domains onto simply connected domains. By the
Riemann mapping theorem, we can associate a univalent function defined in
an arbitrary simply connected domain (other than the whole plane) with one
defined in the unit disk. Therefore, we shall restrict the domain on which these
functions are defined to the disk |z| < 1. Our results will have a nicer form
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if we also assume that the function has a zero (hence its only zero) at the
origin and that its derivative is equal to one at the origin. Since the derivative
of a univalent function never vanishes, every univalent function h(z) may be
reduced to a function of this form by replacing it with

f(z) =
h(z) − h(0)

h′(0)
.

We shall denote by S the class of all functions f(z) that are analytic and
univalent in the unit disk |z| < 1, and are normalized by the conditions
f(0) = 0 and f ′(0) = 1. Thus a function f(z) in S has the power series
representation

f(z) = z + a2z
2 + a3z

3 + · · · (|z| < 1).

We shall denote by T the class of all functions of the form

g(z) = z + b0 +
b1

z
+

b2

z2
+ · · ·

that are analytic and univalent in the domain |z| > 1. The following relation-
ship will enable us to deduce information about S from information about
T .

Theorem 11.32. If f(z) ∈ S, then 1/f(1/z) ∈ T .

Proof. First suppose 1/f(1/z1) = 1/f(1/z2) (|z1| > 1, |z2| > 1). Then
f(1/z1) = f(1/z2), where |1/z1| < 1 and |1/z2| < 1. The univalence of
1/f(1/z) (|z| > 1) now follows from the univalence of f(z) (|z| < 1). The
analyticity of 1/f(1/z) will be a consequence of the analyticity of f(z) if we
can show that f(1/z) �= 0 for |z| > 1. If f(1/z0) = 0 for 0 < |1/z0| < 1, then
f(0) = f(1/z0) = 0, contradicting the univalence of f(z) for |z| < 1. Hence
1/f(1/z) ∈ T , and the proof is complete.

The next theorem, because of its proof rather than its statement, is known
as the area theorem.

Theorem 11.33. If g(z) = z + b0 + (b1/z) + (b2/z2) + · · · is in T , then∑∞
n=1 n|bn|2 ≤ 1.

Proof. The univalent function g(z) maps the circle |z| = r > 1 onto a simple
closed contour C. Set g(z) = u(z) + iv(z). The area of the region R enclosed
by C, denoted by A(r), is

A(r) =
∫ ∫

R

du dv.

Note that A(r) > 0 for each r > 1. If we now let P (u, v) = −v/2 and
Q(u, v) = u/2, an application of Green’s theorem yields
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A(r) =
1
2

∫
C

u dv − v du =
1
2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ, (11.11)

where A(r) > 0. By Exercise 5.2(13), we have g′(z) = (1/iz)(∂g/∂θ). To
evaluate the line integral of (11.11), consider the integral

1
2

∫
|z|=r

g(z)g′(z) dz =
1
2

∫ 2π

0

(u − iv)
[

1
iz

(
∂u

∂θ
+ i

∂v

∂θ

)]
iz dθ (11.12)

=
1
2

∫ 2π

0

(
u

∂u

∂θ
+ v

∂v

∂θ

)
dθ +

i

2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ,

whose imaginary part corresponds to A(r). In order to simplify (11.12), we
write∫

|z|=r

g(z)g′(z) dz =
∫
|z|=r

(
z +

∞∑
m=0

bm(z)−m

)(
1 −

∞∑
n=1

nbnz−n−1

)
dz,

and note that ∫
|z|=r

(z)−mz−n−1 dz =
{

2πir−2m if n = m,
0 if n �= m.

This leads to the identity

1
2

∫
|z|=r

g(z)g′(z) dz =
1
2

∫
|z|=r

z dz − 1
2

∫
|z|=r

∑∞
n=1 n|bn|2r−2n

z
dz

= πi

(
r2 −

∞∑
n=1

n|bn|2
r2n

)
.

Therefore (11.12) is purely imaginary, and

A(r) =
1
2

∫ 2π

0

(
u

∂v

∂θ
− v

∂u

∂θ

)
dθ = π

(
r2 −

∞∑
n=1

n|bn|2
r2n

)
. (11.13)

Since A(r) > 0, we have

r2 −
∞∑

n=1

n|bn|2
r2n

> 0 (r > 1). (11.14)

But (11.14) is valid for every r > 1 so that the result follows upon letting
r → 1+.

Remark 11.34. According to (11.13), the area enclosed by the image of the
circle |z| = r is at most πr2 (the area enclosed by the circle), with equality
only for g(z) = z + b0. Furthermore, equality in the conclusion of the theorem
holds if and only if the area enclosed by the image of |z| = r > 1 becomes
arbitrarily small as r → 1. •
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Remark 11.35. If b1 = 1, then bn = 0 for n > 1. Recall that the proper-
ties of g(z) = z + 1/z were extensively studied in Section 3.3. In particular,
this function was shown to map |z| = r > 1 onto an ellipse, and the ellipse
approaches the linear segment [−2, 2] as r approaches 1. •

The coefficient bound for functions in T , as expressed by the area theorem,
will enable us to obtain a coefficient bound for functions in S. But first we
need the following:

Lemma 11.36. If f(z) ∈ S, then z
√

f(z2)/z2 ∈ S.

Proof. Set f(z) = z +
∑∞

n=2 anzn. Then

f(z2) = z2[1 + a2z
2 + a3z

4 + · · · ] := z2h(z),

where h(z) is analytic and never vanishes in the unit disk. Therefore, choosing
a branch of (h(z))1/2 with (h(0))1/2 = 1, we see that g(z) defined by

g(z) = z

√
f(z2)

z2
= z

√
1 + a2z2 + a3z4 + · · · (11.15)

is analytic with g(0) = 0 and g′(0) = 1. To prove that g(z) is univalent,
suppose g(z1) = g(z2). Then f(z2

1) = f(z2
2), and the univalence of f(z) shows

that z2
1 = z2

2 , that is, z1 = ±z2. But from (11.15), we see that g(z) is an odd
function. Hence, z1 = −z2 implies g(z1) = −g(z2), which is a contradiction
unless z1 = z2 = 0. Therefore z1 = z2, thus establishing the univalence of
g(z).

Remark 11.37. It was necessary to write z
√

f(z2)/z2 instead of
√

f(z2)
because f(z2) has a zero at the origin, which makes the expression√

f(z2) = e(1/2) Log f(z2)

meaningless. •
Theorem 11.38. If f(z) = z + a2z

2 + · · · is in S, then |a2| ≤ 2.

Proof. By Lemma 11.36, g(z) = z
√

f(z2)/z2 ∈ S. We can verify from the
expansion in (11.15) that g′′′(0) = 3a2. Thus we may write

g(z) = z +
a2

2
z3 + · · · .

In view of Theorem 11.32, the Laurent expansion for 1/g(1/z) shows that

1
g(1/z)

=
1

(1/z)[1 + (a2/2)z2 + · · · ] = z − a2

2
1
z

+ · · · ∈ T .

Applying Theorem 11.33, we find that |a2/2|2 ≤ 1, i.e., |a2| ≤ 2.
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Remark 11.39. Retracing the steps in the proof, we can determine when
equality holds. For if a2 = 2eiα, α real, then 1/g(1/z) = z − eiα/z. But this
means that g(z) = z/(1 − eiαz)2 = z

√
f(z2)/z2, so that

f(z) =
z

(1 − eiαz)2
= z + 2eiαz2 + 3e2iαz3 + · · · . (11.16)

For each α ∈ R, this function is known as the Koebe function Moreover, it is
easy to verify that the functions f maps |z| < 1 onto the w plane cut along
the ray with constant argument from −1

4e−iα to ∞. •
The functions in (11.16) are extremal for Theorem 11.38 in the sense that

there is equality on the bound for the second coefficient. Impressed by the
fact that the Koebe function appears in many problems concerning the class
S, Bieberbach asked whether we always have |an| ≤ n. This give rise to the
famous

Bieberbach Conjecture. If f(z) = z +
∑∞

n=2 anzn is in S, then |an| ≤ n
for every n.

Theorem 11.38 proves the conjecture for n = 2. Although stated in 1916,
the conjecture was verified only for the values of n up to n = 7 until Louis
de Branges proved the whole conjecture in 1985. For all n the maximization
of |an| is achieved only by the Koebe function. A large amount of research in
the theory of univalent functions is centered on the Bieberbach conjecture.

The result for n = 2 can be used to prove the following elegant theorem
which shows that this mapping property is, in a sense, extremal.

Theorem 11.40. If f(z) ∈ S and f(z) �= c for |z| < 1, then |c| ≥ 1
4 .

Proof. Set f(z) = z + a2z
2 + · · · . Since f(z) �= c, the function

g(z) =
cf(z)

c − f(z)
= z +

(
a2 +

1
c

)
z2 + · · ·

is also in S. Applying Theorem 11.38 to g(z), we get |a2 + (1/c)| ≤ 2. Thus,
|1/c|− |a2| ≤ |(1/c)+a2| ≤ 2. Now, applying Theorem 11.38 to f(z), we have
|1/c| ≤ 2 + |a2| ≤ 4, and the result follows.

Remark 11.41. Theorem 11.40 is known as a covering theorem or Koebe one-
quarter theorem. It says that every function in S maps the unit disk |z| < 1
onto a domain in the w plane that contains the disk |w| < 1

4 . This result has
a lot of interesting applications in many other parts of complex analysis. By
the inverse function theorem (also by the open mapping theorem), f(|z| < 1)
contains an open neighborhood of the origin (since f(0) = 0 and f ′(0) �= 0).
The Koebe 1

4–theorem actually estimates the size of this neighborhood. •
Finally, we end the section with the following results which provides a

sufficient condition for an analytic function to be univalent.
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Theorem 11.42. If f(z) is analytic in a convex domain D, and Re f ′(z) > 0
in D, then f(z) is univalent in D.

Proof. Choose distinct points z0, z1 ∈ D. Then the straight line segment z =
z0 + t(z1 − z0), 0 ≤ t ≤ 1, must lie in D. Integrating along this path, we get

f(z1) − f(z0) =
∫ z1

z0

f ′(z) dz =
∫ 1

0

f ′(z0 + t(z1 − z0)) (z1 − z0) dt.

Dividing by z1 − z0 and taking real parts, we have

Re
{

f(z1) − f(z0)
z1 − z0

}
= Re

{∫ 1

0

f ′(z0 + t(z1 − z0)) dt

}
> 0.

Thus f(z1) �= f(z0), and f(z) is univalent in D.

Questions 11.43.

1. What kind of results could have been obtained in this section if the
functions had not been normalized?

2. What was the importance of the class T ?
3. Why was a bound on |a2| so useful?
4. Can |a2| = 2 if f(z) is a bounded function in S?
5. Why is the Koebe function extremal for so many theorems?
6. For each n, are we guaranteed the existence of a function in S for which

the absolute value of its nth coefficient is at least as large as the absolute
value of the nth coefficient for any other function in S?

Exercises 11.44.

1. Give an example of a function that is univalent but not analytic in the
disk |z| < 1.

2. (a) If f(z) ∈ S, show that for any nonzero complex number t, |t| ≤ 1,
the function f(tz)/t ∈ S.

(b) If f(z) = z/(1 − z)2 and |t0| > 1, show that f(t0z)/t0 /∈ S.
3. If f(z) = z +

∑∞
k=2 akzk is in S, show that, for each integer n, there

exists a function g(z) = z +
∑∞

k=2 bkzk in S such that bn = |an|.
4. For α real, verify that z/(1 − eiαz)3 is univalent in |z| < 1

2 , but in no
larger disk centered at the origin.

5. If f(z) ∈ S, show that z(f(zk)/zk)1/k ∈ S for every positive integer k.
6. Let f(z) be analytic in a domain D and suppose C is a closed contour

in D. Prove that
∫

C
f(z)f ′(z) dz is purely imaginary.

7. If f(z) = z +
∑∞

n=2 anzn and
∑∞

n=2 n|an| ≤ 1, show that f(z) ∈ S.
8. If f(z) = z −∑∞

n=2 |an|zn is in S, show that
∑∞

n=2 n|an| ≤ 1.
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Entire and Meromorphic Functions

We begin this chapter by defining infinite products, and show that their con-
vergence properties are similar to those of infinite series. Just as infinite series
were used as tools to develop power series expansions for analytic functions, so
infinite products may be used as tools to develop product expansions for ana-
lytic functions. As we shall see, a comparison of product and series expansions
enables us to determine some interesting identities.

Given any sequence {an} tending to ∞, we show that there exists an entire
function whose only zeros are at {an}. In one sense, this theorem is nicer than
the Riemann mapping (existence) theorem of Section 11.3, because we can
actually construct the entire function. We next consider an arbitrary sequence
{bn} tending to ∞, and show that a function can always be found that has
poles at {bn} and is analytic otherwise. In reading this chapter, it is worth
keeping in mind the similarities between properties of zeros and poles.

12.1 Infinite Products

An infinite product is an expression of the form u1u2u3 · · · (denoted by∏∞
n=1 un), where the un are complex numbers. By analogy with infinite series,

we are tempted to say that an infinite product converges if limn→∞(
∏n

k=1 uk)
exists. However, such a definition would be incomplete, because the vanishing
of one term would necessitate the convergence of the infinite product regard-
less of the behavior of the other factors. This certainly is not in keeping with
the spirit of “limit” definitions. We shall thus assume that no factor of an
infinite product vanishes. Even so, we can (unlike the case for finite products)
have an infinite product be zero although none of its factors is zero. For in-
stance, limn→∞

∏n
k=1(1/k) = 0. Such an occurrence (the reasons for which

will become evident later on) we also wish to avoid. We say that an infinite
product

∏∞
n=1 un converges if and only if there is an N such that uk �= 0 for

all k ≥ N , limn→∞
∏n

k=N uk exists and is nonzero. An infinite product that
does not converge is said to diverge. Moreover, if convergence condition holds
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but finitely many uk’s are equal to zero, then we say that the infinite product∏∞
n=1 un converges to zero. In this case, the value of the product is set as 0. If

uk �= 0 for all k ≥ 1, and limn→∞
∏n

k=1 uk = 0, then we say that the infinite
product diverges to zero.

To help clarify the definition of an infinite product, we make several simple
observations. When discussing convergence, we need only to consider infinite
products whose factors are all nonzero. Now, we set Pn =

∏n
k=1 uk, where

uk �= 0 for all k ≥ 1. Here Pn is called the n-th partial product. If
∏∞

n=1 un

converges, then the sequence {Pn} approaches some nonzero value P . Thus,

un =
Pn

Pn−1
→ P

P
= 1 as n → ∞.

It is therefore convenient to express a convergent infinite product in the form∏∞
n=1(1 + an), where an → 0. We formulate

Theorem 12.1. (Necessary condition for convergence of a product) If the
infinite product

∏∞
n=1(1+an) converges, then an → 0 as n → ∞, and an = −1

for at most finitely many n.

As is the case with infinite series, the convergence of the sequence {an}
to 0 is not sufficient for the convergence of the product

∏∞
n=1(1 + an). For

example,

Pn =
n∏

k=1

(
1 +

1
k

)
=

2
1
· 3
2
· 4
3
· · · n + 1

n
= n + 1 → ∞,

so that
∏∞

n=1(1 + 1/n) diverges; similarly,

Pn =
n+1∏
k=2

(
1 − 1

k

)
=

1
2
· 2
3
· · · n − 1

n
· n

n + 1
=

1
n + 1

→ 0,

so that
∏∞

n=2(1 − 1/n) diverges.
It certainly seems natural to investigate further the comparison between

the infinite series
∑∞

n=1 an and the infinite product
∏∞

n=1(1 + an). In the
special case that an ≥ 0 for all n, the following relationship is particularly
nice.

Theorem 12.2. If an ≥ 0, the product
∏∞

n=1(1+ an) converges if and only if
the series

∑∞
n=1 an converges.

Proof. First note that

Sn := a1 + a2 + · · · + an ≤ Pn := (1 + a1)(1 + a2) · · · (1 + an),

since all the terms are nonnegative. Also, ex ≥ 1 + x for nonnegative x. Thus
we have the double inequality
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a1 + a2 + · · · + an ≤ (1 + a1)(1 + a2) · · · (1 + an) ≤ ea1ea2 · · · ean .

That is,

Sn ≤ Pn ≤ eSn . (12.1)

If
∑∞

n=1 an converges to the real number S, then Pn is an increasing sequence
that is bounded above (by eS), and hence must converge. Conversely, if Pn

converges to P , then the left-hand inequality of (12.1) shows that
∑∞

n=1 an

converges to a value no greater than P .

For instance, if an = O(1/np) as n → ∞, then we know that the se-
ries

∑∞
n=1 an converges for p > 1 and diverges for p ≤ 1. Consequently,∏∞

n=1(1 + 1/np) converges for p > 1 and diverges for p ≤ 1.
As we shall see in the next theorem, similar results are obtained when the

terms of the product are negative.

Theorem 12.3. If an ≥ 0, an �= 1, then
∏∞

n=1(1 − an) converges if and only
if

∑∞
n=1 an converges.

Proof. First suppose that
∑∞

n=1 an converges. By the Cauchy criterion, there
exists N such that

aN + aN+1 + · · · + an <
1
2

and 0 ≤ an < 1 for all n ≥ N . We have

(1 − aN )(1 − aN+1) = 1 − aN − aN+1 + aNaN+1 ≥ 1 − aN − aN+1 >
1
2
.

It can be shown by induction that for n ≥ N ,

n∏
k=N

(1 − ak) ≥ 1 −
n∑

k=N

ak >
1
2
. (12.2)

Write

Pn =
n∏

k=1

(1 − ak) = PN−1

n∏
k=N

(1 − ak).

Therefore, Pn/PN−1 is a decreasing sequence (since 0 < 1−an ≤ 1 for n ≥ N)
and has a lower bound. Thus, we get from (12.2) that Pn/PN−1 approaches
a value P , 1

2 ≤ P ≤ 1. Thus Pn → PN−1P �= 0, and hence
∏∞

k=1(1 − ak)
converges.

To prove the converse, we suppose that
∑∞

n=1 an diverges. If an �→ 0, then
1 − an �→ 1 and the product diverges. So we may assume, without loss of
generality, that an → 0. Then 0 ≤ an < 1 for n ≥ N . From the identity

e−x = 1 − x +
(

x2

2!
− x3

3!

)
+

(
x4

4!
− x5

5!

)
+ · · · ,
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we see that 1 − x ≤ e−x for 0 ≤ x < 1, because all the terms in parenthesis
are nonnegative. (Alternatively, it suffices to note that f(x) = (1 − x)ex is
decreasing on [0,∞) so that f(x) ≤ f(0) = 1). Hence

0 ≤
n∏

k=N

(1 − ak) ≤
n∏

k=N

exp(−ak) = exp

(
−

n∑
k=N

ak

)
(n ≥ N).

Letting n → ∞, the divergence of
∑∞

k=N ak shows that
∏∞

k=N (1 − ak) = 0.
Therefore

∏∞
k=1(1 − ak) diverges, and the proof is complete.

Remark 12.4. If a product were allowed to converge to 0, Theorem 12.3
would be false, as can be seen by letting an = 1/(n + 1). •

When the restrictions on {an} are relaxed, the comparison between∏∞
n=1(1+an) and

∑∞
n=1 an is less straightforward. In the exercises, we give an

example for which
∏∞

n=1(1+an) diverges even though
∑∞

n=1 an converges, and
an example for which

∏∞
n=1(1+an) converges even though

∑∞
n=1 an diverges.

In relating infinite products to infinite series in the general case, we will
make use of the complex logarithm. If

∏∞
n=1(1 + an) = P �= 0, then

log

[ ∞∏
n=1

(1 + an)

]
= log P.

However, this does not mean that the series
∑∞

n=1 log(1 + an) converges to
log P . Suppose

Pn =
n∏

k=1

(1 + ak) = |Pn|ei arg Pn .

Then |Pn| → |P |; but all we can say about arg Pn is that

arg Pn → arg P (mod 2π).

In order to compare the convergence of
∏∞

n=1(1 + an) with the convergence
of

∑∞
n=1 log(1 + an), it is necessary to deal with multiple-valued properties

of the logarithm. The key step in the proof of our next theorem consists of
showing that, for a convergent product, the arguments of the partial products
eventually cluster about a fixed point when the same branch of arg(1 + ak) is
chosen for each k.

Theorem 12.5. For an complex, an �= −1, the product
∏∞

n=1(1 + an) con-
verges if and only if the series

∑∞
n=1 Log (1 + an) converges.

Proof. Set Pn =
∏n

k=1(1 + ak), and write

log Pn = ln |Pn| + i arg Pn =
n∑

k=1

Log (1 + ak) =: Sn, (12.3)
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where for each k branch of the logarithm has been chosen that satisfies
−π < Im Log (1 + ak) = Arg (1 + ak) ≤ π. This determines the branch of
log Pn.

Suppose that Pn → P �= 0. Then

ln |Pn| → ln |P | and arg Pn → arg P (mod 2π).

Thus there exists a sequence of real numbers {εn}, εn → 0, and a sequence of
integers {mn} such that for all n,

arg Pn = arg P + 2πmn + εn. (12.4)

We will show that mn is constant (say m) for n sufficiently large. To see this,
by (12.3), we consider the difference

log Pn+1 − log Pn = Log (1 + an+1)

so that

arg Pn+1 − arg Pn = Arg (1 + an+1) = 2π(mn+1 − mn) + εn+1 − εn.

Since an → 0, we have Arg (1 + an) → 0. Hence for all n > N ,

2π|mn+1 − mn| ≤ |Arg (1 + an+1)| + |εn+1| + |εn| < 2π.

Therefore mn+1 = mn = m for n > N , and from (12.4) we see that

arg Pn → arg P + 2mπ.

In view of (12.3), it now follows that
∑∞

n=1 Log (1 + an) converges.
Conversely, suppose Sn =

∑n
k=1 Log (1 + an). Then, we have

eSn = e
∑n

k=1 Log (1+ak) = eLog (1+a1) · · · eLog (1+an) = Pn. (12.5)

Since the exponential function ez is continuous, Sn → S implies that

eSn → eS as n → ∞.

Thus, letting n → ∞ in (12.5) we find that
∏∞

k=1(1 + ak) = eS �= 0.

Theorem 12.5 conveys that any question deal about infinite products can
be translated into a question about infinite series by taking logarithms.

The infinite product
∏∞

n=1(1 + an), an �= −1, is said to be absolutely
convergent if

∏∞
n=1(1+|an|) converges. As in the case with series, an absolutely

convergent product is convergent. Before proving this, we need the following.

Lemma 12.6. For an complex, an �= −1,
∑∞

n=1 an converges absolutely if
and only if

∑∞
n=1 Log (1 + an) converges absolutely. This occurs if and only

if
∏∞

n=1(1 + |an|) converges.
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Proof. If either of the two series converges, then there exists an N such that
|an| ≤ 1

2 for n ≥ N . The Maclaurin expansion

Log (1 + z) = z − z2

2
+

z3

3
− z4

4
+ · · · = z

(
1 +

∞∑
n=1

(−1)n

n + 1
zn

)

is valid for |z| < 1. In particular, for |z| ≤ 1
2 ,∣∣∣∣∣

∞∑
n=1

(−1)n

n + 1
zn

∣∣∣∣∣ ≤ 1
2

∞∑
n=1

1
2n

=
1
2

which shows that

1
2
|z| ≤ |Log (1 + z)| ≤ 3

2
|z| for |z| ≤ 1/2.

Setting z = an, we have for n ≥ N ,

1
2
|an| ≤ |Log (1 + an)| ≤ 3

2
|an|.

Hence either both series converge absolutely or neither series converges abso-
lutely.

It is easy to see that
∏∞

n=1

(
1 + (−1)n+1

n

)
converges to 1 (see Exercise

12.171(d) in 12.17) but not absolutely as
∑∞

n=1
1
n diverges.

Remark 12.7. In view of Lemma 12.6, Theorems 12.2 and 12.3 are seen to
be special cases of Theorem 12.5. •
Example 12.8. Consider the product

∏∞
k=1 (1 + 1/[k(2k + 3)]). Clearly (for

example, by Theorem 12.5 and Lemma 12.6), the product converges. To find
the limit value, we write the kth factor as

1 +
1

k(2k + 3)
=

(
k + 1

k

)(
2k + 1
2k + 3

)

so that

Pn = 3
(

n + 1
2n + 3

)
→ 3

2

as n → ∞. Similarly, writing

1 +
2

k(k + 3)
=

(
k + 1

k

)(
k + 2
k + 3

)
,

we see that the product
∏∞

k=1 (1 + 1/[k(k + 3)]) converges to 3 because

Pn = 3
(

n + 1
n + 3

)
→ 3 as n → ∞.
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Finally, considering the equality

1 − 2
(k + 1)(k + 2)

=
(

k

k + 1

)(
k + 3
k + 2

)
,

we obtain that the product
∏∞

k=1 (1 − 2/[(k + 1)(k + 2)]) converges to 1/3
because

Pn =
1
3

(
n + 3
n + 1

)
→ 1

3
as n → ∞.

Note that the latter product is the inverse of the former. •
Theorem 12.9. If

∏∞
n=1(1 + an) converges absolutely, then

∏∞
n=1(1 + an)

converges. The converse is not true.

Proof. Suppose
∏∞

n=1(1 + |an|) converges. By Theorem 12.2,
∑∞

n=1 |an| con-
verges. Then according to Lemma 12.6,

∑∞
n=1 |Log (1 + an)| converges. Since

an absolutely convergent series is convergent, the result follows from Theorem
12.5.

The product
∏∞

n=1(1 + (−1)n+1/n) converges to 1 but does not converge
absolutely.

Remark 12.10. The terms of an absolutely convergent product can be re-
arranged without affecting the convergence or the value of the product. Its
proof is similar to the comparable proof for infinite series, and is left as an
exercise for the reader. •
Example 12.11. Consider ak = (−1)k−1/

√
k + 1. Then we see that

∑∞
k=1 ak

converges but
∏∞

k=1(1 + ak) diverges, where 1 + ak �= 0 for each k. To show
that the product diverges, we let

Pn =
n∏

k=1

(
1 +

(−1)k−1

√
k + 1

)
.

Then

P2n =

(√
2 + 1√

2

)(√
3 − 1√

3

)
· · ·

(√
2n + 1√

2n

)(√
2n + 1 − 1√

2n + 1

)

≤
(√

3 + 1√
2

√
3 − 1√

3

)
· · ·

(√
2n + 1 + 1√

2n

√
2n + 1 − 1√

2n + 1

)

=
(

2√
2
√

3

)(
4√
4
√

5

)
· · ·

(
2n√

2n
√

2n + 1

)

=
1√
3/2

1√
5/4

· · · 1√
(2n + 1)/2n

=
1√(

1 +
1
2

)(
1 +

1
4

)
· · ·

(
1 +

1
2n

) .
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As the product
∏∞

k=1 (1 + 1/(2k)) diverges to ∞, it follows that P2n → 0 as

n → ∞. In particular,
∏∞

k=1

(
1 + (−1)k−1

√
k+1

)
is divergent, whereas the series∑∞

k=1
(−1)k−1
√

k+1
, by alternating series test, converges but not absolutely. •

Examples 12.12. We easily have

(i)
∞∏

k=1

(
1 +

(−1)k(1 + i)
k3

)
converges (since

∑∞
k=1 1/k3 converges)

(ii)
∞∏

k=1

(
1 +

i√
k(k + 1)

)
diverges

(iii)
∞∏

k=1

(
1 +

(−1)k

√
k

)
diverges

(iv) the product
∞∏

k=1

(
1 +

i

k

)
and the series

∞∑
k=1

Log (1+ i/k) are divergent,

whereas ∞∏
k=1

∣∣∣∣1 +
i

k

∣∣∣∣ =
∞∏

k=1

(
1 +

1
k2

)1/2

converges, because the series
∑∞

k=1 k−2 converges. •
Just as we went from series of complex numbers to series of functions,

so may we go from products of complex numbers to products of complex
functions. Also, as in the case of series of complex functions, the concept
of uniform convergence plays an important role in the study of product of
functions.

Let {fn(z)}n≥1 be a sequence of functions defined on a region Ω. Then
the infinite product

∞∏
n=1

[1 + fn(z)]

is said to converge uniformly on Ω iff

(i) there exists an N such that fn(z) �= −1 for all n > N and all z ∈ Ω
(ii) the sequence

∏n
k=N+1[1+fk(z)] converges uniformly on Ω to some P (z),

where P (z) �= 0 for all z ∈ Ω.

The most useful test for uniform convergence of products is analogous to
the M -test (see Theorem 6.31) which has been used extensively to establish
uniform (and absolute) convergence of series.

Theorem 12.13. (M-test for the convergence of a product) Suppose that
{fn(z)} is a sequence of functions such that |fn(z)| ≤ Mn for all z in a region
Ω. If

∑∞
n=1 Mn converges, then

∏∞
n=1[1+fn(z)] converges uniformly in Ω. In

addition, if f(z) =
∏∞

n=1[1+fn(z)] and each fn(z) is analytic in Ω, then f(z)
is analytic in Ω. Also, f(z0) = 0 for some z0 ∈ Ω if and only if fn(z0) = −1
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for some n. The order of the zero of f at z0 is the sum of the order of zeros
of the functions 1 + fn(z) at z0.

Proof. According to Theorem 12.2,
∏∞

n=1[1 + fn(z)] converges absolutely,
hence converges, for each point in Ω. It suffices to show that the sequence
Pn(z) =

∏n
k=1[1+fk(z)] is uniformly Cauchy in Ω. Note that for any positive

integers m and n (m < n), we have

Pn(z) − Pm(z) =
n−1∑
k=m

[Pk+1(z) − Pk(z)] =
n−1∑
k=m

Pk(z)fk+1(z). (12.6)

But for all k,

|Pk(z)| ≤
∞∏

n=1

(1 + |fn(z)|) ≤ exp
∞∑

n=1

|fn(z)| ≤ exp
∞∑

n=1

Mn := eM .

By Theorem 6.26, the series
∑∞

n=1 |fn(z)| converges uniformly in R. Hence,
choosing m large enough in (12.6) so that

∑n−1
k=m |fk+1(z)| < ε for all z ∈ Ω

and for all n, we have

|Pn(z) − Pm(z)| ≤
n−1∑
k=m

|Pk(z)| |fk+1(z)| ≤ eM
n−1∑
k=m

|fk+1(z)| < εeM .

Since ε is arbitrary, it follows that the sequence {Pn(z)} is uniformly Cauchy
in Ω and the proof of the first part is complete.

Next suppose that f(z0) = 0 for some z0 ∈ Ω. Then by the definition of
the convergence of infinite products, there exists an N such that

FN (z) =
∞∏

k=N+1

(1 + fk(z))

is nonvanishing at z0. By the above discussion, FN (z) is the limit of a uni-
formly convergent sequence of analytic functions. Hence the limit FN (z) is
analytic in Ω. Continuity of FN (z) at z0 shows that FN (z) is nonvanishing in
some neighborhood D(z0; δ) of z0. Now

f(z) =
∞∏

k=1

(1 + fk(z)) =
N∏

k=1

(1 + fk(z))

(
lim

n→∞

n∏
k=N+1

(1 + fk(z))

)
.

Note that the second factor is analytic and nonvanishing on D(z0; δ). There-
fore, the zero of f(z) and their order arise only from the zeros of the factor∏N

k=1(1 + fk(z)).

Remark 12.14. Showing the sequence {Pn(z)} to be uniformly Cauchy does
not preclude the possibility that Pn(z) → 0 for some z. This is why it was
necessary to show that {Pn(z)} also converged pointwise (to a nonvanishing
function).
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Example 12.15. Consider the product
∏∞

k=0(1 + z2k

). Clearly, the series∑∞
k=0 z2k

converges absolutely for |z| < 1, and hence the product converges
absolutely for |z| < 1. Now we observe that

(1 − z)P0(z) = 1 − z2

(1 − z)P1(z) = (1 − z2)(1 + z2) = 1 − z22

...
...

(1 − z)Pn(z) = (1 − z2n

)(1 + z2n

) = 1 − z2n+1

and hence, for |z| < 1, we have

(1 − z) lim
n→∞Pn(z) = lim

n→∞(1 − z2n+1
) = 1,

as desired. More generally, we have

∞∏
k=0

(
1 +

( z

R

)2k)
=

R

R − z
for |z| < R.

In particular,
∞∏

k=1

(
1 +

( z

R

)2k)
=

R2

R2 − z2
for |z| < R. •

Questions 12.16.

1. What are the similarities between infinite series and infinite products?
2. If a sequence of partial products {Pn} converges, does {log Pn} con-

verge? What about the converse?
3. In view of Theorem 12.2 and Theorem 12.3, is it true for real sequences

{an} that
∏∞

n=1(1 + an) converges if and only if
∑∞

n=1 an converges?
4. How many ways can an infinite product diverge?
5. If

∏∞
n=1(1+an) and

∏∞
n=1(1+ bn) converge, does

∏∞
n=1(1+an)(1+ bn)

also converge?
6. If

∏∞
n=1(1 + an) and

∏∞
n=1(1 + bn) diverge, does

∏∞
n=1(1 + an)(1 + bn)

diverge? Can
∏∞

n=1(1 + an)(1 + bn) be convergent?
7. If α and β are two real numbers such that α+β = −1, does the product∏∞

n=1

(
1 + nα(1 + n)β

)
converge?

8. We know that a series converges if and only if every subsequence ob-
tained by deleting a finite number of terms of the series converges. Does
the definition of infinite product assure the analogous statement for in-
finite products?

9. If
∏∞

n=1(1 + an) converges, does
∏∞

n=1 |1 + an| converge?
10. If

∏∞
n=1(1+an) and

∏∞
n=1(1+ |an|) diverge, what can we say about the

sequence {an}?
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11. Can
∏∞

n=1(1+fn(z)) converge uniformly but not absolutely? Absolutely
but not uniformly?

12. What would we mean by an infinite product satisfying the Cauchy cri-
terion? What is its relation to convergence?

13. If
∑∞

n=1 |an| converges, what can be said about
∏∞

n=1(1 + anz)? How
about

∏∞
n=1(1 + anz2)? How about

∏∞
n=1(1 + anp(z)), where p(z) is

some polynomial?
14. How would Theorem 12.5 be proved without making the assumption

that −π < arg(1 + ak) ≤ π for each k?

Exercises 12.17.

1. Show that

(a)
∏∞

n=2

(
1 − 1

n2

)
=

1
2

(c)
∏∞

n=2

(
1 − 2

n(n + 1)

)
=

1
3

(e)
∏∞

n=3

n2 − 1
n3 − 4

= 4

(b)
∏∞

n=1

(
1 +

1
n(n + 2)

)
= 2

(d)
∏∞

n=1

(
1 +

(−1)n+1

n

)
= 1

(f)
∏∞

n=2

n3 − 1
n3 + 1

=
2
3
.

2. Show that the product(
1 − 1

2

)(
1 +

1
2

)(
1 − 1

3

)(
1 +

1
3

)(
1 − 1

4

)
· · ·

converges, but not absolutely.
3. Suppose {an} is real with |an| < 1. If

∑∞
n=1 an converges, show that∏∞

n=1(1 + an) converges if and only if
∑∞

n=1 a2
n converges.

4. Set

an =

⎧⎪⎪⎨
⎪⎪⎩

1√
n

+
1
n

+
1

n
√

n
if n even,

− 1√
n

if n odd.

Show that
∏∞

n=1(1 + an) converges but both
∑∞

n=1 an and
∑∞

n=1 a2
n

diverge.
5. Suppose that {an} is a decreasing sequence of real numbers, with

lim
n→∞ an = 0.

Show that
∏∞

n=1[1 + (−1)nan] converges if and only if
∑∞

n=1 a2
n con-

verges.
6. Set

an =

⎧⎪⎪⎨
⎪⎪⎩

1√
n

+
1
n

if n odd,

− 1√
n

if n even.
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Show that
∏∞

n=1(1+an) converges even though
∑∞

n=1 an diverges. Does
this provide an example of an infinite product that is convergent but
not absolutely?

7. Show that the following either all converge or all diverge:

∞∑
n=1

|an|,
∞∏

n=1

(1 + |an|),
∞∑

n=1

| log(1 + an)|,
∞∑

n=1

log(1 + |an|).

8. Determine the region of convergence for
(a)

∏∞
n=1(1 + zn) (b)

∏∞
n=1(1 − z2n

) (c)
∏∞

n=2(1 − n−z)

(d)
∏∞

n=1 cos(z/n) (e)
∏∞

n=1 sin(z/n) (f)
∏∞

n=2 cos(z/2n).

9. Suppose an > 0 for every n, and
∑∞

n=1 an converges. Show that

a1

∞∏
n=2

(
1 +

an

sn−1

)
=

∞∑
n=1

an,

where sn =
∑n

k=1 ak.

12.2 Weierstrass’ Product Theorem

Let us now consider the factorization of entire functions. As a first step con-
sider an entire function f which does not vanish in C. Then we may express
f(z) as

f(z) = exp(g(z)),

where g(z) is an entire function. In fact, as f ′(z)/f(z) is analytic in C,
f ′(z)/f(z) possesses an anti-derivative g(z) so that

g′(z) =
f ′(z)
f(z)

for some entire function g. Using this, we see that

(f(z)e−g(z))′ = 0, i.e., f(z) = c exp(g(z))

for some constant c. Absorbing the constant c into g(z), we obtain the desired
representation.

Next, given a finite set of complex numbers {0, a1, a2, . . . , an} (ak �= 0
for 1 ≤ k ≤ n), we can always find an entire function (in fact, a polynomial)
having zeros at these points of order m, m1, . . . ,mn, respectively. Since such
an entire function is analytic in C with no singularities except at ∞, one such
entire function is the polynomial

p(z) = zm
n∏

k=1

(
1 − z

ak

)mk

.



12.2 Weierstrass’ Product Theorem 423

Moreover, if f is an entire function with a finite number of zeros at 0, ak

(ak �= 0) for 1 ≤ k ≤ n, of order m, mk (1 ≤ k ≤ n), respectively, then

h(z) =
f(z)
p(z)

has removable singularities at 0, ak (1 ≤ k ≤ n). It follows then that h(z)
defines an entire function with no zeros in C. As a consequence,

f(z) = eg(z)p(z) = eg(z)zm
n∏

k=1

(
1 − z

ak

)mk

.

That is, f(z) can be expressed as a product of a polynomial and a nonvanishing
entire function.

Finally, the question arises as to whether an entire function can always
be found whose only zeros are at an arbitrarily prescribed sequence of points.
Unfortunately, the answer is no. For example, if an entire function has zeros
at 1/n (n ∈ N), then according to Theorem 8.47, the entire function must be
identically zero. More generally, a nonconstant entire function cannot have a
limit point of zeros in C. Consequently, the set of zeros of an entire function
which has infinitely many zeros in C must have ∞ as its only limit point. For
example,

0 = cos z =
eiz + e−iz

2
=⇒ e2iz = −1 = ei(π+2kπ)

=⇒ z = (2k + 1)π/2, k ∈ Z;

0 = sin z =
eiz − e−iz

2
=⇒ e2iz = 1 = e2kπi, i.e., z = kπ, k ∈ Z,

and ez − 1 = 0 =⇒ z = 2kπi for k ∈ Z. Thus, in each case, the limit point
of the zeros of cos z, sin z, and ez is ∞. We will show, however, that if the
sequence of zeros of an entire function has no finite limit point, then the
question concerning factorization can be answered in the affirmative.

Suppose a sequence {an}n≥1 approaching ∞ is arranged so that

0 < |a1| ≤ |a2| ≤ |a3| ≤ · · · .

A naive guess for an appropriate entire function is

f(z) =
∞∏

n=1

(
1 − z

an

)
.

Unfortunately,
∏∞

n=1(1 − z/an) may diverge. Certainly if f(z) is entire, then
the function has its only zeros at points of the sequence {an} and nowhere
else.
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Example 12.18. Let us first discuss an example with some details. Consider
the infinite product

∏∞
n=1(1 − z2/n2) which has zeros at z = ±n, n ∈ N. Fix

an arbitrary R > 0. If |z| ≤ R, then choose N large enough so that

|z/n| ≤ R/n < 1 for all n ≥ N ,

and so, 1− z2/n2 �= 0 for |z| ≤ R and for n ≥ N . In view of this observation,
we may write

∞∏
n=1

(
1 − z2

n2

)
= PN−1(z)

∞∏
n=N

(
1 − z2

n2

)
= PN−1(z)FN (z).

Note that PN−1(z) is entire and has zeros only at the points z = ±n (n < N)
and FN (z) is an infinite product with no zeros in |z| ≤ R. Also,

∞∑
n=1

∣∣∣∣ z2

n2

∣∣∣∣ = |z|2
∞∑

n=1

1
n2

≤ R2
∞∑

n=1

1
n2

< ∞

and so, by Theorem 12.13, the infinite product is uniformly convergent for
|z| ≤ R and hence, on every compact subsets of C. By Theorem 12.13, we
conclude that

∏∞
n=1

(
1 − z2

n2

)
is entire, and the infinite product is zero only

at z = ±n, n ∈ N. •
We shall now determine the restrictions on {an} for which f(z) is entire.

Suppose that
∑∞

n=1 1/|an| converges. Fix an arbitrary R > 0. If |z| ≤ R,
then |z/an| ≤ R/|an| and an application of Theorem 12.13 shows that Pn(z)
converges uniformly to f(z) =

∏∞
n=1(1 − z/an) in |z| ≤ R and hence, on

every compact subset of C. By Theorem 8.16, f(z) must therefore be an
entire function. For example, we can now easily construct an entire function
whose only zeros are at 1, 4, 9, 16, . . . . The product

∏∞
n=1(1− z/n2) is such a

function.
However, it is more difficult to construct an entire function whose zeros

are at the positive integers. The expression
∏∞

n=1(1− z/n) does not represent
an entire function. In fact, setting z = −1 we see that

lim
n→∞

n∏
k=1

(
1 +

1
k

)
= lim

n→∞(n + 1) = ∞.

What is needed is a “convergence producing” factor. Moreover, if the series∑∞
n=1 1/|an| diverges but

∑∞
n=1 1/|an|2 converges, we can modify the above

construction and show that
∞∏

n=1

(
1 − z

an

)
ez/an

is entire. We will first show that
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f(z) =
∞∏

n=1

(
1 − z

n

)
ez/n

is an entire function and the same method can be adapted to solve a more
general problem. We set

1 + fn(z) = (1 − z/n)ez/n.

To determine the uniform convergence of the product, we need to find an
upper bound for |fn(z)|. We write

1 + fn(z) = exp ( Log (1 − z/n) + z/n) .

Fix an arbitrary R > 0. If |z| ≤ R, then choose N large enough so that
N ≥ 2R. Then |z/n| ≤ R/n < 1 for all n ≥ N , and so the identity

Log
(
1 − z

n

)
= −

∞∑
k=1

1
k

( z

n

)k

(12.7)

is valid for |z| ≤ R. We get

∣∣∣Log
(
1 − z

n

)
+

z

n

∣∣∣ =

∣∣∣∣∣−
∞∑

k=2

1
k

( z

n

)k
∣∣∣∣∣ ≤ 1

2

∞∑
k=2

(
R

n

)k

=
1
2

R2/n2

1 − R/n
≤ R2

n2
,

because R < 2R ≤ N ≤ n. Hence,

|fn(z)| = |exp ( Log (1 − z/n) + z/n) − 1|
≤ exp (|Log (1 − z/n) + z/n|) − 1
≤ exp(R2/n2) − 1
≤ (R2/n2) exp(R2/n2) (since ex − 1 ≤ xex for x ≥ 0)
≤ e(R2/n2) = Mn (since R/n < 1)

so that ∞∑
n=N

|fn(z)| ≤ eR2
∞∑

n=N

1
n2

< ∞ (N > 2R).

According to Theorem 12.5,
∏∞

n=1(1+fn(z)) converges uniformly for |z| ≤ R.
Hence

f(z) =
∞∏

n=1

(
1 − z

n

)
ez/n =

N−1∏
n=1

(
1 − z

n

)
ez/n

∞∏
n=N

(
1 − z

n

)
ez/n

is an entire function with the prescribed zeros. Another such function may be
obtained just by multiplying f(z) by any nonvanishing entire function.
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Similarly, f(z) =
∏∞

n=1(1 + z/n)e−z/n is an entire function with simple
zeros at the negative integers and no other zeros. Consequently, an entire
function having a simple zero at each integer is given by

z
∞∏

n=1

(
1 − z

n

)
ez/n

∞∏
n=1

(
1 +

z

n

)
e−z/n = z

∞∏
n=1

(
1 − z

n

)(
1 +

z

n

)
ez/n−z/n

= z

∞∏
n=1

(
1 − z2

n2

)
.

The rearrangement of the factors in the first equality is justified by the abso-
lute convergence of the infinite products.

A more general method for constructing an entire function with prescribed
zeros is indicated by the identity (12.7). For instance, suppose we want an
entire function to have its zeros at z =

√
n, n ∈ N. Since

Log
(

1 − z√
n

)
= − z√

n
− 1

2

(
z√
n

)2

− 1
3

(
z√
n

)3

− · · · ,

the above method shows that
∞∏

n=1

(
1 − z√

n

)
e(z/

√
n)+(1/2)(z2/n)

is such a function. Similarly, an entire function that has simple zeros on the
real axis at points z = ±n1/4 (n ≥ 0) and nowhere else is given by

z

∞∏
n=1

(
1 − z2

√
n

)
ez2/

√
n+(1/2)(z4/n).

More generally, if
∑∞

n=1 1/|an|p+1 converges for some positive integer p, then

f(z) =
∞∏

n=1

(
1 − z

an

)
Ep

(
z

an

)
(12.8)

is an entire function whose only zeros are at z = an, where

Ep(z) = exp
(
z + (1/2)z2 + · · · + (1/p)zp

)
and is referred to as the convergence producing factor.

As general as (12.8) appears, we still have not accounted for all sequences.
For instance, suppose we wish to construct an entire function whose zeros
occur at the points log n (n = 2, 3, 4, . . . ). We cannot use (12.8) because∑∞

n=2[1/(lnn)p] diverges for all p. Observe that the convergence producing
factors in (12.8) involve a sequence of polynomials, all of degree p. In the
general case, we will not place a uniform bound on the degree of the polyno-
mials. This, in turn, will enable us to construct an appropriate entire function
without regard to the convergence of a series involving its zeros.
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Theorem 12.19. (Weierstrass’s Product Theorem) Given any complex se-
quence having no finite limit point, there exists an entire function that has
zeros at these points and only these points.

Proof. We suppose that the entire function f(z) to be constructed is to have
zeros at {an} so arranged that 0 < |a1| ≤ |a2| ≤ |a3| ≤ · · · . We have assumed,
without loss of generality, that none of the an is zero, for if the k of these points
are zero, then zkf(z) has the desired property.

For each n, set

Pn(z) =
z

an
+

1
2

(
z

an

)2

+ · · · +
1
n

(
z

an

)n

so that exp(Pn(z)) = En(z/an), where En(z) is the convergence producing
factor as defined above. We wish to show that the function

f(z) =
∞∏

n=1

(
1 − z

an

)
En

(
z

an

)

satisfies the conditions of the theorem. As in the proof of above example, it
suffices to show that

∞∑
n=1

[
Log

(
1 − z

an

)
+ Pn(z)

]

converges uniformly on an arbitrary compact subset |z| ≤ R of the plane.
Choose |an| large enough so that |an| ≥ 2R ≥ 2|z|. Then, we have

∣∣∣∣Log
(

1 − z

an

)
+ Pn(z)

∣∣∣∣ =

∣∣∣∣∣−
∞∑

k=n+1

1
k

(
z

an

)k
∣∣∣∣∣

≤ 1
n + 1

∞∑
k=n+1

∣∣∣∣ z

an

∣∣∣∣
k

≤ 1
n + 1

∣∣∣∣ z

an

∣∣∣∣
n ∞∑

k=1

1
2k

≤
∣∣∣∣ z

an

∣∣∣∣
n

≤ 1
2n

.

If we set 1 + fn(z) = exp ( Log (1 − z/an) + Pn(z)), then we have

|fn(z)| ≤ exp(1/2n) − 1 ≤ (1/2n)e.

According to Theorem 12.5,
∏∞

n=1(1 + fn(z)) converges uniformly to f(z) for
|z| ≤ R. Since R was arbitrary, the infinite product defines an entire function
with prescribed zeros. The assertion in the theorem about the zeros of f(z)
follows from the definition.
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Remark 12.20. The theorem does not exclude the case of multiple zeros. It
is certainly possible that ak = ak+1 for some k. •
Remark 12.21. The function f(z) is by no means uniquely determined by
the zeros. For instance, we have seen that

∏∞
n=1(1 − z/n)ez/n is an entire

function having zeros at the positive integers. In the proof of the theorem, we
have shown that

∞∏
n=1

(
1 − z

n

)
e(z/n)+(1/2)(z/n)2+ ···+(1/n)(z/n)n

is another such function. We can also show that
∞∏

n=1

(
1 − z

n

)
e(z/n)+(1/2)(z/n)2 ,

∞∏
n=1

(
1 − z

n

)
e(z/n)+(1/2)(z/n)2+(1/3)(z/n)3 ,

and infinitely many more entire functions also have their only zeros at the
positive integers. •

Suppose two entire functions have the same zeros with the same multiplic-
ities. How do the two functions compare? Since the complex plane C is simply
connected, our characterization is a consequence of Theorem 7.51. We have

Theorem 12.22. If f(z) and g(z) are entire functions whose zeros coincide
in location and in multiplicity, then there exists an entire function φ(z) such
that f(z) = eφ(z)g(z).

Proof. After we cancel the common factors, the function f(z)/g(z) is seen to
be an entire function with no zeros. The result follows from Theorem 7.51 (see
also the discussion in the beginning).

Weierstrass’s theorem shows that for a preassigned sequence of points, we
can construct an infinite product that represents an entire function having
zeros at the preassigned sequence. What about the converse? Given an entire
function whose zeros are known, can we construct an infinite product repre-
sentation for the function? In view of Theorem 12.22, this is always possible
up to a multiplicative exponential function. The explicit determination of the
exponential function is usually quite difficult. Before we solve this problem
for the function sinπz, it is appropriate to formulate Theorem 12.22 in the
following form.

Theorem 12.23. Let {an}n≥1 be a sequence of nonzero complex numbers and
f(z) be an entire function that has zeros at an, listed with multiplicities. Sup-
pose that f has a zero of order k ≥ 0 at zero. Then there exists an entire
function g(z) such that

f(z) = zkeg(z)
∞∏

n=1

(
1 − z

an

)
En

(
z

an

)
.
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More generally, one can replace the product in the last equation by
∞∏

n=1

(
1 − z

an

)
Epn

(
z

an

)

where {pn}n≥1 is a sequence in N such that for each R > 0,

∞∑
n=1

(
R

|an|

)pn+1

< ∞.

Suppose that Pn(z) =
∏n

k=1[1 + fk(z)] is a finite product of analytic
functions on a domain D. Then logarithmic differentiation gives

P ′
n(z)

Pn(z)
=

n∑
k=1

f ′
k(z)

1 + fk(z)
.

Note that P ′
n(z)/Pn(z) has poles at the zeros of Pn(z). This procedure con-

tinues to hold for uniformly convergent infinite products of analytic functions
and we state the following result whose proof is left as a simple exercise.

Theorem 12.24. Suppose {fn(z)}n≥1 is a sequence of analytic functions in
a domain D and let

∏∞
n=1[1 + fn(z)] converge uniformly on D to f(z). Then

f ′(z)
f(z)

=
∞∑

k=1

f ′
k(z)

1 + fk(z)
,

where the sum converges uniformly on D when f(z) �= 0.

The following result is often useful for expanding entire or meromorphic
functions.

Theorem 12.25. Let f be analytic except for simple poles at a1, a2, . . . and
be arranged so that

0 < |a1| ≤ |a2| ≤ · · · ≤ |an| ≤ · · · , with bn = Res [f(z); an].

Let {Cn} be a sequence of positively oriented simple closed contours such that
each Cn includes a1, a2, . . . , an but no other poles. Suppose that

Rn = dist (0, Cn) → ∞ as n → ∞,

Ln = length of Cn = O(Rn),
|f(z)| = o(Rn) on Cn

(e.g., the last condition is satisfied if f(z) is bounded on all Cn ). Then,

f(z) = f(0) +
∞∑

n=1

bn

(
1

z − an
+

1
an

)

for all z except at these poles.
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Proof. Define

Fn(α) =
1

2πi

∫
Cn

g(z) dz, g(z) =
f(z)

z(z − α)
,

where α lies inside Cn. If α is not a pole of f , then g(z) has simple poles at
each ak, 0, α with

Res [g(z); ak] = lim
z→ak

(z − ak)
f(z)

z(z − α)
=

bk

ak(ak − α)

Res [g(z); 0] = lim
z→0

z
f(z)

z(z − α)
= −f(0)

α

Res [g(z);α] = lim
z→α

(z − α)
f(z)

z(z − α)
=

f(α)
α

,

respectively. Therefore, by the Residue Theorem,

Fn(α) =
∑

Res [g(z);Cn]

which gives

Fn(α) =
n∑

k=1

bk

ak(ak − α)
− f(0)

α
+

f(α)
α

. (12.9)

Now, for z ∈ Cn,

|z| ≥ Rn = dist (0, Cn) and |z − α| ≥ |z| − |α| ≥ Rn − |α| > 0

so that

|Fn(α)| ≤ 1
2π

Ln

Rn(Rn − |α|) max
z∈Cn

|f(z)| → 0 as n → ∞ ,

and therefore the sequence {Fn(α)} converges to zero uniformly on the com-
pact set Cn. Allowing n → ∞ in (12.9) gives

f(α) = f(0) +
∞∑

k=1

bk

(
1

α − ak
+

1
ak

)
.

Now we recall that sin πz has simple zeros at all the integers. We have
seen that

z
∞∏

n=1

(
1 − z2

n2

)

is an entire function having a simple zero at each integer. Therefore, by The-
orem 12.22, sin πz can be expressed as
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sin πz = eg(z)z

∞∏
n=1

(
1 − z2

n2

)
, (12.10)

where g(z) is some entire function. Suppose, for the moment, we could show
that g(z) is constant. Then (12.10) could be written as

sin πz = cz
∞∏

n=1

(
1 − z2

n2

)
.

Since limz→0(sinπz)/z = π = limz→0 c
∏∞

n=1(1 − z2/n2) = c, we would then
have

sin πz = πz
∞∏

n=1

(
1 − z2

n2

)
. (12.11)

The remainder of the proof will consist of showing that g(z) is indeed constant,
thus justifying (12.11). To this end, suppose that z is not an integer. Then we
form the logarithm derivative in (12.10) to obtain

π cot πz = g′(z) +
1
z

+
∞∑

n=1

−2z

n2(1 − z2/n2)
(12.12)

= g′(z) +
1
z

+
∞∑

n=1

2z

z2 − n2
,

where term-by-term differentiation is justified because
∑∞

n=1 Log (1− z2/n2)
converges uniformly on every compact subset of the open set that exclude the
integers. It suffices to show that g′(z) ≡ 0. To do this, we use the method
developed in the proof of Theorem 12.25. Now we consider

f(z) =

{
π cot πz − 1

z
for z �= 0

0 for z = 0

and Cn to be the square with vertices at z = (n + 1/2)(±1 ± i), n ∈ N. Then
f(z) is analytic at the origin having simple poles only at n, n ∈ Z \{0}, and
the contour Cn does not pass through the poles of f(z). Clearly, the function
1/z is bounded on these squares and for each n ∈ Z \{0},

Res [f(z);n] = lim
z→n

(z − n)
[
π cos πz

sinπz
− 1

z

]
=

cos πn

cos πn
= 1.

Next we show that there exists a positive number M such that

| cot πz| ≤ M =
1 + e−3π

1 − e−3π
for z ∈ Cn.

To see this, we observe that for z = n + 1
2 + iy (y ∈ R),
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| cot πz| = | tan(iπy)| =
∣∣∣∣e−πy − eπy

e−πy + eπy

∣∣∣∣ ≤ 1 < M.

Similarly, for z = x + i(n + 1
2 ) (x ∈ R), we can calculate

| cot πz| =
∣∣∣∣e2iπz + 1
e2iπz − 1

∣∣∣∣ ≤ 1 + e−(2n+1)π

1 − e−(2n+1)π
≤ 1 + e−3π

1 − e−3π
= M.

Since cot(πz) = cot(−πz), the same bound is valid on the other two sides
of Cn, which confirms that cot(πz) is bounded on all contours Cn taken as a
whole. By Theorem 12.25, we get

f(z) = lim
k→∞

k∑
n=−k
n �=0

(
1

z − n
+

1
n

)

= lim
k→∞

k∑
n=1

(
1

z − n
+

1
z + n

)

=
∞∑

n=1

2z

z2 − n2
.

We conclude that the identity

π cot πz =
1
z

+
∞∑

n=1

2z

z2 − n2
(12.13)

is valid for all nonintegral values of z. A comparison of (12.13) with (12.12)
shows that g′(z) ≡ 0. But this means that g(z) is constant, which verifies
(12.11).

Whenever an infinite product expansion for an entire function is found, it
is of interest to compare it with a power series expansion. This can often lead
to interesting relationships. To illustrate, we have

sinπz = πz

∞∏
n=1

(
1 − z2

n2

)
= πz − (πz)3

3!
+

(πz)5

5!
− · · · . (12.14)

The z3 term in the infinite product is

πz(−z2)
(

1 +
1
22

+
1
32

+ · · ·
)

= −πz3
∞∑

n=1

1
n2

.

By the uniqueness of the Maclaurin expansion, we must have

−π
∞∑

n=1

1
n2

= −π3

3!
.
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This gives the identity
∑∞

n=1 1/n2 = π2/6.
As we have seen, the function

f(z) =
∞∏

n=1

(
1 +

z

n

)
e−z/n (12.15)

is an entire function having simple zeros at the negative integers and no other
zeros. The function f(z − 1) has the same zeros in addition to a zero at the
origin. Hence

f(z − 1) = eg(z)zf(z), (12.16)

where g(z) is some entire function. Next we show that g(z) is actually a
constant. Forming the logarithmic derivative in (12.16), we get

f ′(z − 1)
f(z − 1)

= g′(z) +
1
z

+
f ′(z)
f(z)

which, by Theorem 12.24, gives

∞∑
n=1

(
1

n + z − 1
− 1

n

)
= g′(z) +

1
z

+
∞∑

n=1

(
1

n + z
− 1

n

)
. (12.17)

The sum on the left-hand side of (12.17) can be expressed as(
1
z
− 1

)
+

∞∑
n=2

(
1

n + z − 1
− 1

n

)

=
1
z
− 1 +

∞∑
n=1

[(
1

n + z
− 1

n

)
+

(
1
n
− 1

n + 1

)]

=
1
z
− 1 +

∞∑
n=1

(
1

n + z
− 1

n

)
+ 1

=
1
z

+
∞∑

n=1

(
1

n + z
− 1

n

)
.

Comparing this with the right side of (12.17), we find that g′(z) ≡ 0. Thus
g(z) = γ, γ a constant. To determine γ, we set z = 1 in (12.16). This gives

1 = f(0) = eγf(1) = eγ
∞∏

n=1

(
1 +

1
n

)
e−1/n, or

e−γ = lim
n→∞ [(1 + 1)(1 + 1/2) · · · (1 + 1/n) exp (−(1 + 1/2 + · · · + 1/n))] .

Therefore, using the natural logarithm, we find
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γ =
∞∑

n=1

[
1
n
− ln

(
1 +

1
n

)]
(12.18)

= lim
n→∞

[
1 +

1
2

+
1
3

+ · · · +
1
n
− ln(n + 1)

]
.

The constant γ in (12.18) is known as Euler’s constant; its numerical value
is approximately 0.577. The fact that this limit exists gives a “sophisticated”
way of showing that

∑∞
n=1(1/n) diverges. The function

Γ (z) =
1

eγzzf(z)
:=

e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

ez/n (12.19)

is known as the gamma function. It represents an analytic function at all
points except the negative integers and zero, where it has simple poles. Since
g(z) = γ in (12.16), we have

f(z) = eγ(z + 1)f(z + 1).

This enables us to determine the most important property of the gamma
function; namely, the functional equation

Γ (z + 1) =
1

eγ(z+1)(z + 1)f(z + 1)
=

1
eγzf(z)

= zΓ (z). (12.20)

When z = n, a positive integer, (12.20) shows that

Γ (n + 1) = nΓ (n) = n(n − 1)Γ (n − 1) = · · · = n(n − 1) · · · 2Γ (1).

But
Γ (1) =

1
eγf(1)

=
1

eγe−γ
= 1,

so that Γ (n + 1) = n!. We collect the above piece of information as

Theorem 12.26. The gamma function is analytic in C except at the simple
poles at 0,−1,−2, . . . . Also, Γ (z + 1) = Γ (z) and Γ (n + 1) = n! for n ∈ N.
Moreover,

1
Γ (z)

= eγzz

∞∏
n=1

(
1 +

z

n

)
e−z/n

is an entire function.

An interesting relationship exists between the gamma function and the
sine function. Applying the relations

sinπz = πzf(z)f(−z) and f(z) = 1/zeγzΓ (z)

in (12.19), we obtain
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sinπz =
π

eγzΓ (z)(−z)e−γzΓ (−z)
=

π

−zΓ (−z)Γ (z)
.

Since −zΓ (−z) = Γ (1 − z), it follows that

π

sinπz
= Γ (z)Γ (1 − z)

for all nonintegral values of z. In particular, setting z = 1
2 , we find that

Γ 2
(

1
2

)
= π. Because Γ is obviously a positive function on (0,∞), we deduce

that Γ
(

1
2

)
=

√
π. Also, it follows that Γ (z) is zero-free because for z �=

0,−1,−2, . . . , the gamma function is given by a convergent infinite product
of nonvanishing factors. Further, for n ∈ N, the functional equation gives

Γ

(
2n + 1

2

)
=

(
2n − 1

2

)
Γ

(
2n − 1

2

)
=

1 · 3 · · · (2n − 1)
2n

Γ

(
1
2

)
,

whereas the above identity gives

Γ

(
−2n + 1

2

)
=

π

sinπ(n + 3
2 )

1
Γ

(
2n+3

2

) =
(−1)n+1π

Γ
(

2n+3
2

) =
(−1)n+12n+1

√
π

1 · 3 · · · (2n + 1)
.

Remark 12.27. In real analysis, the function

Γ (x) =
∫ ∞

0

tx−1e−t dt (x > 0)

is studied extensively. Interestingly enough, the gamma function defined by
(12.19) can be expressed in this integral form for all positive real values of z.
In the next chapter, we will redefine the gamma function as a complex integral
and show that the two definitions represent the same function at all points
where the integral converges. •
Remark 12.28. We may also evaluate Γ ( 1

2 ) by this integral definition. We
have

Γ

(
1
2

)
=

∫ ∞

0

t−1/2e−t dt.

A substitution of t = y2 leads to

Γ

(
1
2

)
= 2

∫ ∞

0

e−y2
dy = 2

√
π

2
=

√
π,

this last integral having been evaluated in Section 9.3. •
Questions 12.29.

1. Can an entire function be constructed that has “a” points at a preas-
signed sequence of points?

2. If an → a ∈ C and if f is entire with zeros at an, then is f(z) ≡ 0 in C?
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3. If
∑∞

n=1 1/an diverges, can
∏∞

n=1(1 − z/an) be analytic anywhere?
4. What is meant by a “convergence producing” factor?
5. Is there an analog to Weierstrass’s theorem for functions analytic in an

arbitrary domain?
6. What other choices for the sequence {Pn(z)} would have worked in the

proof of Weierstrass’s theorem?
7. If

∑∞
n=1 an converges, is

∏∞
n=1(1+anz) entire? Is

∏∞
n=1(1+anz2) entire?

Is
∏∞

n=1(1 + anp(z)) entire? Here p(z) is a polynomial.
8. What is the relationship between the infinite product and infinite series

expansion for entire functions?
9. Knowing the infinite product expansion for sinπz, what other infinite

product expansions can we determine?

Exercises 12.30.

1. Construct an analytic function f in |z| < R such that f has zeros only
at z = −R + 1/n, n ∈ N.

2. Construct an entire function whose only zeros are at z = lnn (n =
2, 3, 4, . . . ).

3. Construct an entire function f(z) with the following properties:
a) f(z) vanishes at z = 1, 2, 3, . . . and nowhere else.
b) The zero of f(z) at z = n has multiplicity n.
c) Construct an entire function f(z) such that f has zeros at z = n3/2

(n ∈ N) and nowhere else.
d) Construct an entire function f(z) such that f has zeros at z = n3/4

(n ∈ N) and nowhere else.
4. (a) Find the value of

∏∞
n=1(1 + 1/n2).

(b) Show that
∏∞

n=2(1 − 1/n4) = (eπ − e−π)/8π.
5. (a) Show that e2z − 1 and sin iz have simple zeros at the same points.

(b) Set (e2z − 1)/ sin iz = eg(z), and determine g(z).
6. By comparing the term involving z5 for the series and the product ex-

pansion of sinπz, show that
∑∞

n=1 n−4 = π4/90.
7. Use the summation formula for π cot πz to sum the series

∑∞
n=1 n−2

and
∑∞

n=1 n−4.
8. Show that the convergence of (12.13) is uniform on all compact subsets

that contain no integers.
9. Show that ∞∏

n=1

(
1 − z

n

)
ez/n+(5z2/n2)

represents an entire function.
10. Suppose 0 < |a1| ≤ |a2| ≤ · · · → ∞. Show that

∏∞
n=1

(
1 − z

an

)
eQn(z)

represents an entire function, where

Qn(z) =
z

an
+

1
2

(
z

an

)2

+ · · · +
1

[lnn]

(
z

an

)[ln n]

.
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11. Prove that

cos z =
∞∏

n=1

[
1 − 4z2

(2n − 1)2π2

]
.

12. Prove that

π coth πz =
1
z

+
∞∑

n=1

2z

z2 + n2
.

13. If a is not an integer, show that

f(z) =
∞∏

n=−∞
n�=0

(
1 +

z

a + n

)
e−z/(n+a)

is an entire function, and that

f(z) =
a sinπ(z + a)
(z + a) sinπa

e−πz cot(πa)ez/a

.

14. Evaluate
∏∞

n=1(1 + 1/n2 + 1/n4).
15. Use the product expansion for sinπz to show that

(a)
π

2
=

(
2 · 2
1 · 3

)(
4 · 4
3 · 5

)(
6 · 6
5 · 7

)
· · · .

(b)
√

2 =
(

2 · 2
1 · 3

)(
6 · 6
5 · 7

)(
10 · 10
9 · 11

)
· · · .

(c)
√

3 = 2
(

2 · 4
3 · 3

)(
8 · 10
9 · 9

)(
14 · 16
15 · 15

)
· · · .

16. Show that
d

dz

(
Γ ′(z)
Γ (z)

)
=

∞∑
n=0

1
(z + n)2

,

where Γ (z) is defined by (12.19). Here the function Ψ = Γ ′/Γ is known
as the digamma function, or alternatively, as the Gauss psi-function.

17. Show that Γ (z) sinπz is an entire function.
18. Expand ez − 1 in an infinite product.
19. Construct an entire function having simple zeros at z = n2 (n ∈ N)

and nowhere else. Show that one solution to this is given by the entire
function (sinπ

√
z)/(π

√
z).

12.3 Mittag-Leffler Theorem

A function is said to be meromorphic in a domain D if it has no singular-
ities, other than possibly poles, in D. If no domain is specified, it will be
assumed that the function is meromorphic in the whole complex plane. Thus,
every entire function is meromorphic but the converse is not necessarily true.
Sum and products of meromorphic functions are meromorphic. Quotients of



438 12 Entire and Meromorphic Functions

meromorphic functions are meromorphic, provided that the denominator is
not identically zero. For b ∈ C, the function 1/(z − b) is an example of the
simplest type of meromorphic function. As a consequence of the definition, we
see that the function f(z) which is meromorphic in C cannot have infinitely
many poles in a bounded region. For if it does, the sequence of poles must
have a limit point p. Since f(z) cannot be analytic in any neighborhood of p,
the point p is a singularity that is not a pole. Note that

1
sin(1/(1 − z))

has infinitely many poles in the unit disk |z| < 1.

Example 12.31. From Theorem 12.26, we observe that the gamma func-
tion defined by (12.19) is a meromorphic function in C with simple poles at
0,−1,−2, . . . and the functional equation Γ (z + 1) = Γ (z) shows that

Γ (z + n) = (z + n − 1)Γ (z + n − 1) = (z + n − 1) · · · (z + 1)zΓ (z),

for z �= 0,−1,−2, . . . . Using this, we see that

lim
z→−n

(z + n)Γ (z) = lim
z→−n

Γ (z + n + 1)
(z + n − 1) · · · (z + 1)z

=
Γ (1)

(−1)(−2) · · · (−n + 1)(−n)
=

(−1)n

n!
,

and therefore Res [Γ (z);−n] = (−1)n/n!. •
The reciprocal of an entire function is meromorphic, its poles consisting

of the zeros of the entire function. More generally, we have the following
characterization of meromorphic functions.

Theorem 12.32. A function is meromorphic if and only if it can be expressed
as the quotient of entire functions.

Proof. First, suppose that f(z) = g(z)/h(z), where g(z) and h(z) are entire
functions with no common zeros (any common zero can be factored out). Then
the only singularities of f(z) are poles consisting of the zeros of h(z). Hence
f(z) is meromorphic.

Conversely, suppose f(z) is meromorphic. Then by Weierstrass’s theorem,
there exists a function h(z) where zeros coincide in both position and order
with the poles of f(z). Therefore, g(z) = f(z)h(z) is an entire function because
the poles of f(z) are cancelled by the zeros of h(z). Thus f(z) = g(z)/h(z) is
the quotient of entire functions, and the proof is complete.

In this section, we are going to prove a theorem for meromorphic functions
analogous to Weierstrass’s theorem for entire functions. Given any finite set
of points {b1, b2, . . . , bn}, the (meromorphic) rational function
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1
z − b1

+
1

z − b2
+ · · · +

1
z − bn

has a simple pole at each point of the set. Therefore, any other meromorphic
function f(z) having a simple pole at bk with the principal part as above must
be of the form

f(z) =
n∑

k=1

1
z − bk

+ φ(z)

where φ(z) is an arbitrary entire function. If the given set is infinite, the
problem of constructing a meromorphic function having a pole at each point
of the set is more complicated. Then we have to worry about the convergence.

Consider the function

f(z) =
∞∑

n=1

1
z2 − n2

,

which is defined and converges for all values of z except for the squares of
integers. For all z in some neighborhood of a given point not containing the
square of an integer, we have

1
|z2 − n2| ≤

2
n2

for n sufficiently large. Hence by Theorem 6.31, the convergence of the series
for f(z) is uniform in some neighborhood of each such point. This shows
that f(z) is analytic at all points except z = n2 (n ∈ N) so that f(z) is a
meromorphic function having simple pole at z = n2.

On the other hand, suppose we wish to construct a meromorphic function
having simple poles at the positive integers with residues equal to 1. The likely
candidate f(z) =

∑∞
n=1 1/(z − n) fails to converge anywhere. As in the case

of Weierstrass theorem, a convergence producing term is needed. Note that
the constant term in the power series expansion of 1/(z − n) about z = 0 is
−1/n. So we try with the function

∞∑
n=1

(
1

z − n
+

1
n

)
=

∞∑
n=1

z

n(z − n)
.

Note that for |z| ≤ R and N large enough so that N ≥ 2R, then

|z − n| ≥ n − |z| ≥ n − R ≥ n/2 for all n ≥ N.

Therefore, ∣∣∣∣ 1
n(z − n)

∣∣∣∣ ≤ 2
n2

for n ≥ N

so that the series converges absolutely for all z excluding positive integers.
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In one sense, the theorem we prove about meromorphic functions will be
more general than the corresponding theorem for entire functions. For we will
construct a meromorphic function not only with preassigned poles, but with
preassigned principal parts. Let {bn} be a sequence tending to ∞. For each
n, associate a rational function of the form

Pn

(
1

z − bn

)
=

a
(n)
1

z − bn
+

a
(n)
2

(z − bn)2
+ · · · +

ak
(n)
n

(z − bn)kn
, (12.21)

where the a
(n)
i are complex constants, ak

(n)
n

�= 0. Note that kn is the or-
der of the pole, and may vary with n. Our goal is to construct a meromor-
phic function whose principal part for each n is Pn(1/(z − bn)). If the series∑∞

n=1 Pn(1/(z−bn)) does not converge, it will be shown that the convergence
producing factor for each n consists of a polynomial that is the partial sum
of the Maclaurin expansion for Pn(1/(z − bn)).

Before stating and proving our theorem, one final remark is in order. Sup-
pose two meromorphic functions f(z) and g(z) have the same poles with the
same principal parts. Then f(z) − g(z) has no poles, and consequently must
be an entire function. Hence any two meromorphic functions with the same
principal parts can differ by at most an (additive) entire function. This en-
tire function is the meromorphic analog to the (multiplicative) exponential
function of the corollary to Theorem 12.22. Now we formulate this discussion
as

Theorem 12.33. Let f(z) be a meromorphic function. If φ(z) is an arbitrary
entire function, then the most general meromorphic function g(z) which coin-
cides with f(z) in its poles and the corresponding principal parts is given by
g(z) = f(z) + φ(z).

We now illustrate this result by an example. Consider

f(z) = cot z and g(z) =
2ie2iz

e2iz − 1
.

Then both f(z) and g(z) are meromorphic functions in C having simple poles
at z = nπ, n ∈ Z. It is a simple exercise to see that, for both the functions,
residues at each of these poles are 1. Thus, the poles and the corresponding
principal parts of f and g are the same. Consequently, they differ by an
additive entire function. Again, it is easy to see that f(z) − g(z) = −i, an
entire function.

The dominating result for meromorphic functions in C is due to Mittag-
Leffler.

Theorem 12.34. (Mittag-Leffler’s Theorem) Let {bn}n≥1 be a sequence of
points tending to ∞, and Pn(1/(z − bn)) be a polynomial in 1/(z − bn) of the
form (12.21). Then there exists a meromorphic function f(z) that has poles
at the points bn (n ∈ N) with principal part Pn(1/(z − bn)), and is otherwise
analytic.
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Proof. Without loss of generality, assume that none of the bn is zero, for we
can always add a rational function having a pole at the origin. It may also be
assumed that the sequence is so arranged that

0 < |b1| ≤ |b2| ≤ |b3| ≤ · · · .

For each n, the rational function Pn(1/(z − bn)) is analytic in the disk
|z| < |bn| and has a Maclaurin expansion

Pn

(
1

z − bn

)
=

∞∑
k=0

a
(n)
k zk.

This series clearly converges absolutely in |z| < |bn| and uniformly in |z| ≤
|bn|/2. Thus, Pn(1/(z − bn)) can be approximated in |z| ≤ |bn|/2 by a partial
sum

Qn(z) =
nk∑

k=0

a
(n)
k zk = a

(n)
0 + a

(n)
1 z + · · · + a(n)

nk
znk

as closely as we please. In particular, for a large value of n, we have∣∣∣∣Pn

(
1

z − bn

)
− Qn(z)

∣∣∣∣ <
1
2n

for |z| ≤ |bn|
2

. (12.22)

We will show that the function

f(z) =
∞∑

n=1

[
Pn

(
1

z − bn

)
− Qn(z)

]

is the meromorphic function that we want. It suffices to show that the series
f(z) converges uniformly on an arbitrary compact subset |z| ≤ R of C that
excludes the points |bn| ≤ R. Choosing N so that |bN | ≥ 2R, we see from
(12.22) that

∞∑
n=N

∣∣∣∣Pn

(
1

z − bn

)
− Qn(z)

∣∣∣∣ <

∞∑
n=N

1
2n

< ∞.

The uniform convergence follows from the Weierstrass M -test (see Theorem
6.31). Note that

∞∑
n=N

[
Pn

(
1

z − bn

)
− Qn(z)

]

is analytic in |z| ≤ R because the poles of Pn(1/(z − bn)) lie outside |z| = R.
For |z| ≤ R (≤ |bN |/2)

N−1∑
n=0

[
Pn

(
1

z − bn

)
− Qn(z)

]

is an analytic function with no singularities except the prescribed poles. Since
R is arbitrary, f(z) is meromorphic in the plane.
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Remark 12.35. Instead of choosing the convergence producing polynomials
{Qn(z)}, we could have chosen any other sequence of polynomials {Rn(z)}
for which

∑∞
n=1[Pn(z)−Rn(z)] converges uniformly on compact subsets that

exclude the poles. •
Remark 12.36. In general, the degree of the convergence producing polyno-
mials {Rn(z)} varies with n. If

∑∞
n=1 Pn(1/(z−bn)) converges, we may choose

Rn(z) ≡ 0. If

Pn

(
1

z − bn

)
=

1
z − n

= − 1
n

∞∑
k=0

( z

n

)k

(|z| < n),

it was shown that we may choose Rn(z) = 1/n, a sequence of constant poly-
nomials. The reader may also verify that if

Pn

(
1

z − bn

)
=

1
z −√

n
= − 1√

n

∞∑
k=0

zk

nk/2
(|z| <

√
n),

we may choose Rn(z) = 1/
√

n + z/n. •
The function

1
z

+
∞∑

n=1

(
1

z − n
+

1
z + n

)
=

1
z

+
∞∑

n=1

2z

z2 − n2

is seen to be a meromorphic function having a simple pole at each integer
with residue 1. Hence

f(z) =
1
z

+
∞∑

n=1

2z

z2 − n2
+ g(z), (12.23)

where g(z) is entire, is the most general such meromorphic function. In the
special case that g(z) ≡ 0, a comparison of (12.23) and (12.13) shows that
f(z) = π cot πz.

Throughout this section, we have seen similarities between Weierstrass’s
theorem and Mittag-Leffler’s theorem. As an application of Mittag-Leffler’s
theorem, we will now prove a generalization of Weierstrass’s theorem.

Theorem 12.37. Let {an} be the sequence of distinct complex numbers ap-
proaching ∞. Then for any sequence {cn} of complex numbers, there exists
an entire function f(z) such that f(an) = cn for every n.

Proof. According to Weierstrass’s theorem we construct an entire function
g(z) that has simple zeros at z = an. Then g(an) = 0 and g′(an) �= 0 for
each n. According to Mittag-Leffler’s theorem, we can construct a meromor-
phic function h(z) that has simple poles at z = an with the principal part
cn/g′(an)(z − an) (if cn = 0, h(z) is taken to be analytic at z = an).
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Since the simple poles of h(z) are also the simple zeros of g(z), the singu-
larities of f(z) = g(z)h(z) are removable. That is, f(z) is an entire function.
For each n, we can expand g(z) in a Taylor series about the point z = an.
Then

g(z) = g′(an)(z − an) +
g′′(an)

2
(z − an)2 · · · . (12.24)

Also we may write

h(z) =
cn

g′(an)(z − an)
+ h1(z), (12.25)

where h1(z) is analytic in some neighborhood of z = an. Combining (12.24)
and (12.25), we find

f(an) = lim
z→an

f(z) = lim
z→an

g(z)h(z) = cn.

This completes the proof.

Remark 12.38. If cn ≡ 0, then Theorem 12.37 reduces to Weierstrass’s the-
orem. •
Questions 12.39.

1. What is the relationship between Weierstrass’s theorem and Mittag-
Leffler’s theorem? Can one be derived from the other?

2. What can be said about the sum of meromorphic functions? The prod-
uct?

3. How do the convergence producing factors of Weierstrass’s theorem and
Mittag-Leffler’s theorem compare?

4. Why is the logarithmic derivative important in this chapter?
5. In the proof of Mittag-Leffler’s theorem, why was it necessary to assume

that none of the bn were equal to zero?
6. Is there a unique entire function that satisfies the conditions of Theorem

12.37?
7. Is Mittag-Leffler’s theorem still valid if we allow the principal part to

have essential singularities?

Exercises 12.40.

1. Construct a meromorphic function f(z) with the following two proper-
ties:
(i) f(z) has poles at z = 1, 2, 3, . . . and nowhere else.
(ii) The pole at z = n has order n.

2. Show that (sin z)/(e2iz +1) and 1/(2i cos z) differ by an entire function,
and determine it.

3. Show that
∏∞

n=1(1 − z/an) is entire if and only if
∑∞

n=1 1/(z − an) is
meromorphic.
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4. Let (p ≥ 1) be an integer. If
∑∞

n=1 1/|an|p+1 converges, show that

∞∑
n=1

(
1

z − an
+

1
an

+
z

a2
n

+
z2

a3
n

+ · · · +
zp−1

ap
n

)

is meromorphic.
5. (a) Suppose that 0 < |b1| ≤ |b2| ≤ · · · (|bn| → ∞). Show that there

exists a positive sequence {an} such that f(z) =
∑∞

n=1 an/(z − bn)
is analytic except at z = bn.

(b) Consider the expansion f(z) = c0 + c1z + c2z
2 + · · · + cmzm + · · ·

and express cm in terms of the quantities an and bn.
6. Suppose g(z) =

∏∞
n=1(1 − z/bn) is entire. With the notation of the

previous exercise, show that h(z) = f(z)g(z) is entire and evaluate
h(zn) in terms and αn and g′(zn).

7. Suppose
∑∞

n=1(|αn|/n2) converges. Show that
(a) f(z) = 2z

∑∞
n=1(−1)nαn/(z2 − n2) is meromorphic.

(b) g(z) = (sinπz/π)f(z) is entire, with g(n) = αn.
8. Show that

π2

sin2(πz)
=

∞∑
n=−∞

n�=0

1
(z − n)2

.

9. Derive the Weierstrass’s theorem from Mittag-Leffler’s theorem.
10. Prove the identity

1
ez − 1

=
1
z
− 1

2
+ 2z

∞∑
n=1

1
z2 + 4π2n2

.

11. Show that the function Θ(z) defined by

Θ(z) =
∞∏

k=1

(
1 + h2k−1ez

) (
1 + h2k−1e−z

)
(0 < |h| < 1),

is entire and satisfies the functional equation

Θ(z + 2 log h) = h−1e−zΘ(z).
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Analytic Continuation

We have previously seen that an analytic function is determined by its be-
havior at a sequence of points having a limit point. This was precisely the
content of the identity theorem (see Theorem 8.48) which is also referred to
as the principle of analytic continuation. For example, as a consequence, there
is precisely a unique entire function on C which agrees with sinx on the real
axis, namely sin z. But we have not yet explored the following question: If
f(z) is analytic in a domain D1, is there a function analytic in a different
domain D2 that agrees with f(z) in D1 ∩ D2? Analytic continuation deals
with the problem of properly redefining an analytic function so as to extend
its domain of analyticity. In the process, we come across functions for which
no such extension exists. Finally, we apply our knowledge of analytic continu-
ation to two of the most important functions in analysis, the gamma function
and the Riemann-zeta function, defined originally by a definite integral and
an infinite series, respectively.

13.1 Basic Concepts

Consider the power series

f0(z) =
∞∑

n=0

zn.

This power series converges for |z| < 1, and hence, f0(z) is analytic in the
disk |z| < 1 and represents there the function f(z) = 1/(1− z). Although the
power series diverges at each point on |z| = 1, f(z) is analytic in C \{1}. For
any point z0 �= 1, the Taylor series representation

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n (13.1)

is valid when |z − z0| < |1 − z0| (see Figure 13.1). The disk in which (13.1)
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Figure 13.1.

converges may or may not have points in common with the disk |z| < 1. For
example,

f1(z) =
∞∑

n=0

f (n)(eiα)
n!

(z − eiα)n (0 < α < 2π)

converges in a disk that overlaps |z| < 1; but the disk, |z − 2| < 1, in which

f2(z) =
∞∑

n=0

f (n)(2)
n!

(z − 2)n

converges does not. In Figure 13.2, we show the domains in which f0(z),
f1(z), and f2(z) converge. In their respective domains of convergence, they all
represent the same function f(z) = 1/(1 − z). In addition, the integral∫ ∞

0

e−t(1−z) dt

Figure 13.2.
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converges for Re z < 1 and it can be easily checked that the integral represents
f(z) = 1/(1 − z) in this half-plane. But they agree with f0(z) =

∑∞
n=0 zn

(|z| < 1) for a certain value of z although they appear different. In fact
they agree with f(z) = 1/(1 − z) which is analytic for all z �= 1. So we see
that apparently unrelated functions may actually represent the same analytic
function in different domains.

Suppose f0(z) is known to be analytic in a domain D0. We wish to deter-
mine the largest domain D ⊃ D0 for which there exists an analytic function
f(z) such that f(z) ≡ f0(z) in D0. As we have just seen in the first example,
C \{1} is the largest domain containing |z| < 1 in which an analytic function
may be defined that agrees with f0(z) =

∑∞
n=0 zn in |z| < 1. In our terminol-

ogy, we say that f0 has an analytic continuation from the unit disk |z| < 1
into the punctured plane C \{1}. To see how one can carry out the process of
analytic continuations, we need to introduce several definitions.

A function f(z), together with a domain D in which it is analytic, is said
to be a function element and is denoted by (f,D). Two function elements
(f1, D1) and (f2, D2) are called direct analytic continuations of each other iff

D1 ∩ D2 �= ∅ and f1 = f2 on D1 ∩ D2.

Whenever there exists a direct analytic continuation of (f1, D1) into a domain
D2, it must be uniquely determined, for any two direct analytic continuations
would have to agree on D1 ∩ D2, and by the identity theorem (see Theorem
8.48) would consequently have to agree throughout D2. That is, given an
analytic function f1 on D1, there is at most one way to extend f1 from D1

into D2 so that the extended function is analytic in D2. Thus, one of the main
uses of this idea is to extend the functional relations, initially valid for a small
domain D1, to a larger domain D2. Sometimes such an extension may not be
possible. For instance, if D1 is the punctured unit disk 0 < |z| < 1 and D2 is
the unit disk, then the function f1(z) = 1/z cannot be extendable analytically
from D1 into D2. Similarly, if

D1 = C \{z : Re z ≤ 0, Im z = 0}, and D2 = C,

then, for f1(z) = Log z, no extension from D1 to D2 is possible.

Remark 13.1. Consider the series

f1(z) =
∞∑

n=1

zn

n2
.

This series converges for |z| ≤ 1 and f1(z) is analytic in the disk |z| < 1, and
represents the function

f(z) = −
∫ z

0

Log (1 − t)
t

dt.
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However, f1(z) cannot be continued analytically to a domain D with 1 ∈ D,
since

f ′′
1 (z) =

∞∑
n=2

n − 1
n

zn−2 −→ ∞ as z → 1+.

This observation shows that the convergence or divergence of power series at
a point on the circle of convergence does not determine whether the function
which defines the series can or cannot be continued along that point. •

The property of being a direct analytic continuation is not transitive. That
is, even if (f1, D1) and (f2, D2) are direct analytic continuations of each other,
and (f2, D2) and (f3, D3) are direct analytic continuations of each other, we
cannot conclude that (f1, D1) and (f3, D3) are direct analytic continuations
of each other. A simple example of this occurs whenever D1 and D3 have no
points in common. However, there is a relationship between f1(z) and f3(z)
that is worth exploring.

Suppose {(f1, D1), (f2, D2), . . . , (fn, Dn)} is a finite set of function ele-
ments with the property that (fk, Dk) and (fk+1, Dk+1) are direct analytic
continuations of each other for k = 1, 2, 3, . . . , n− 1. Then the set of function
elements are said to be analytic continuations of one another. Such a set of
function elements is then called a chain.

Example 13.2. Define (see Figure 13.3)

Figure 13.3. Illustration for a chain with n = 3
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f1(z) = Log z for z ∈ D1

f2(z) = Log z for z ∈ D2

f3(z) = Log z + 2πi for z ∈ D3.

Then {(f1, D1), (f2, D2), (f3, D3)} is a chain with n = 3. Note that 0 =
f1(1) �= f3(1) = 2πi. •

Note that (fi, Di) and (fj , Dj) are analytic continuations of each other if
and only if they can be connected by finitely many direct analytic continua-
tions. If γ : [0, 1] → C is a curve and if there exists a chain {(fi, Di)}1≤i≤n,
of function elements such that

γ([0, 1]) ⊂ ∪n
i=1Di, z0 = γ(0) ∈ D1, zn = γ(1) ∈ Dn,

then we say that the function element (fn, Dn) is an analytic continuation of
(f1, D1) along the curve γ. That is a function element (f,D) can be analyt-
ically continued along a curve if there is a chain containing (f, D) such that
each point on the curve is contained in the domain of some function element
of the chain. As another example, the domains of a chain are also shown in
Figure 13.4. In some situations, analytic continuation of function element are
carried out easily by means of power series. In this case, a chain is a sequence
of overlapping disks.

Figure 13.4. Illustration for a chain

Given a chain {(f1, D1), (f2, D2), . . . , (fn, Dn)}, can a function f(z) be
defined such that f(z) is analytic in the domain {D1 ∪ D2 ∪ · · · ∪ Dn}?
Certainly this can be done when n = 2. The function

f(z) =
{

f1(z) if z ∈ D1

f2(z) if z ∈ D2,

is analytic in D1∪D2. If D1∩D2∩ · · · ∩Dn �= ∅, we can show by induction that
f defined by f(z) = fi(z) for z ∈ Di (i = 1, 2, . . . , n) is analytic. However,
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0

Figure 13.5.

the proof for the general case fails. Consider the four domains illustrated in
Figure 13.5. For a fixed branch of log z, set f1(z) = log z in D1. The function
element (f1, D1) determines a unique direct analytic continuation (f2, D2),
which determines (f3, D3), which determines (f4, D4). We thus have the chain
{(f1, D1), (f2, D2), (f3, D3), (f4, D4)}. However, in the domain D1∩D4 it is not
true that f1(z) = f4(z). We actually have f4(z) = f1(z)+2πi for all points in
D1∩D4. The difference in the two functions lies in the fact that the argument
of the multiple-valued logarithmic function has increased by 2π after making a
complete revolution around the origin. Note also that we can continue (f1, D1)
into the domain D3 by different chains and come up with different functions.
For the chains {(f1, D1), (f2, D2), (f3, D3)} and {(f1, D1), (g1, D4), (g2, D3)},
we have the values of f3 and g2 differing by 2πi. Before we continue the
discussion, let us present our case by a concrete example.

Example 13.3. Consider the function f(z), initially defined on the disk D =
{z : |z − 1| < 1} by the series expansion

f(z) = z1/2 = 1 +
1
2
(z − 1) − 1

8
(z − 1)2 + · · · .

Here it is understood that we start with the series representation of the prin-
cipal branch of

√
z:

f(z) = e(1/2) Log z = (1 + (z − 1))1/2.

Note also that f is analytic in D. Let γ : [0, 2π] → C be the closed contour
given by γ(t) = eit, starting from z0 = γ(0) = 1. Then f(z) actually has an
analytic continuation along γ. In fact, we have an explicit convergent power
series about eit (write z1/2 = eit/2[1 + (z − eit)/eit]1/2):

ft(z) = eit/2 +
1
2
e−it/2(z − eit) +

1
2

(
1
2
− 1

)
1
2!

e−3it/2(z − eit)2 + · · · ,
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where z ∈ Dt = {z : |z − eit| < 1}. Thus, after one complete round along the
unit circle, we end up at z = 2π by

f2π(z) = −
[
1 +

1
2
(z − 1) − 1

8
(z − 1)2 + · · ·

]

which is just the other branch of
√

z. The initial and final function elements
in this case are (e(1/2) Log z, D) and (−e(1/2) Log z, D), respectively. Also, we
observe that the domain formed by the union of all the domains Dt (which
can be clearly covered by finitely many such disks), 0 ≤ t ≤ 2π, surrounding
the origin is not simply connected. In the case of a simply connected domain,
the result of the continuation will be unique, no matter what chain is used.
This is the substance of the Monodromy Theorem. •

The difference between single-valued and multiple-valued functions may
be viewed from another point of view. Suppose f(z) is analytic in a domain
D. A point z1 is said to be a regular point of f(z) if the function element (f,D)
can be analytically continued along some curve from a point in D to the point
z1. The set of all regular points of f(z) is called the domain of regularity for
f(z).

As we have seen, the function f0(z) =
∑∞

n=0 zn has domain of regularity
{z : z �= 1}. Note that the function f(z) = 1/(1− z) is analytic in the domain
of regularity for f0(z) and agrees with f0(z) at all points where they are both
analytic.

Consider now the function

F0(z) =
∫ z

0

f0(ζ) dζ =
∫ z

0

( ∞∑
n=0

ζn

)
dζ =

∞∑
n=0

zn+1

n + 1
(|z| < 1),

where the path of integration lies in the unit disk. The function

F (z) =
∫ z

0

dζ

1 − ζ
= −Log (1 − z)

agrees with F0(z) in the disk |z| < 1, and is analytic everywhere in the plane
except z = 1 and the ray Arg (1− z) = π (i.e., the ray along the positive real
axis beginning at z = 1). The function

F1(z) = − log(1 − z) (0 < arg(1 − z) < 2π)

is a continuation of F (z) from the half-plane 0 < Arg (1−z) < π to the whole
plane, excluding the point z = 1 and the ray Arg (1 − z) = 0.

Thus the domain of regularity for

F0(z) =
∞∑

n=0

zn+1

n + 1
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is {z : z �= 1}. Note, however, that there does not exist a function that is
both analytic in the domain of regularity for F0(z) and agrees with F0(z) in
the disk |z| < 1. As we shall see by the next theorem, this phenomenon occurs
only because {z : z �= 1} is a multiply connected domain.

Remark 13.4. We say that the multiple-valued function log(1− z) is regular
in the domain {z : z �= 1} because each such point is a regular point. Some
authors allow multiple-valued functions to be analytic. Their definition of
analytic then corresponds to our definition of regular. This next theorem shows
us that a regular function is always single-valued (hence analytic) in a simply
connected domain. •
Theorem 13.5. (Monodromy Theorem) Let D be a simply connected do-
main, and suppose f0(z) is analytic in a domain D0 ⊂ D. If the function
element (f0, D0) can be analytically continued along every curve in D, then
there exists a single-valued function f(z) that is analytic throughout D with
f(z) ≡ f0(z) in D0.

Proof. We outline the proof, leaving some details for the interested reader.
Suppose the conclusion is false. Then there exist points z0 ∈ D0, z1 ∈ D,
and curves C1, C2 both having initial point z0 and terminal point z1 such
that (f0, D0) leads to a different function element in a neighborhood of z1

when analytically continued along C1 than when analytically continued along
C2 (see Figure 13.6). This means that (f0, D0) does not return to the same
function element when analytically continued along the closed curve C1 −C2.

Figure 13.6.

To prove the theorem, it thus suffices to show that the function element
(f0, D0), D0 ⊂ D, can be continued along any closed curve lying in D and
return to the same value. In the special case that the closed curve C is a
rectangle, the proof will resemble that of Theorem 7.39.

Divide the rectangle C into four congruent rectangles, as illustrated in
Figure 7.16. Continuation along C produces the same effect as continuation
along these four rectangles taken together. If the conclusion is false for C,
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then it must be false for one of the four sub-rectangles, which we denote by
C1. We then divide C1 into four congruent rectangles, for one of which the
conclusion is false. Continuing the process, we obtain a nested sequence of
rectangles for which the conclusion is false. According to Lemma 2.25, there
is exactly one point, call it z∗, belonging to all the rectangles in the nest.

Since z∗ ∈ D, there exists a function element (f∗, D∗) with z∗ ∈ D∗ ⊂ D.
For n sufficiently large, the rectangle Cn of the nested sequence is contained
in D∗. But this means that f∗(z) is analytic in a domain containing Cn,
contrary to the way Cn was defined. This contradiction concludes the proof
in the special case in which the curve is a rectangle. For the general proof, see
Hille [Hi].

Suppose f(z) is analytic in a domain D and z0 is a boundary point of D.
The point z0 will be a regular point of f(z) if, for some disk D0 centered at
z0, there is a function element (f0, D0) such that f0(z) ≡ f(z) in the domain
D0 ∩ D. Any boundary point of D that is not a regular point of f(z) is said
to be a singular point of f(z).

For the function f(z) =
∑∞

n=0 zn (|z| < 1), we have seen that each point
on the circle |z| = 1 is a regular point except for the point z = 1. That
all points on the circle cannot be regular is a consequence of the following
theorem.

Theorem 13.6. If the radius of convergence of the series f(z) =
∑∞

n=0 anzn

is R, then f(z) has at least one singular point on the circle |z| = R.

Proof. Denote the disk |z| < R by D, and suppose that all points on |z| = R
are regular points. Then, for each point zα on the circle, we can find a function
fα defined in a disk Dα centered at zα such that the function element (fα, Dα)
is a direct analytic continuation of (f,D). Since ∪αDα covers the compact set
|z| = R, a finite subcover (D1, D2, . . . , Dn) may be found. The function g
defined by

g(z) =
{

f(z) if z ∈ D
fi(z) if z ∈ Di,

is analytic in the domain D′ = D ∪ D1 ∪ D2 ∪ · · · ∪ Dn. Since D′ contains
the disk |z| ≤ R, the domain must also contain the disk |z| ≤ R + ε for some
positive ε. Hence the power series representation g(z) =

∑∞
n=0 anzn is valid

in the disk |z| < R + ε, contradicting the fact that the Maclaurin series for
f(z) has radius of convergence R.

Corollary 13.7. If f(z) is analytic in the disk |z − z0| < R and the Taylor
series expansion about z = z0 has radius of convergence R, then f(z) has at
least one singular point on the circle |z − z0| = R.

Proof. Set ζ = z − z0, and apply the theorem to f(ζ).

Although we are guaranteed that a power series must have singular points
on its circle of convergence, determining their location is, in general, a difficult



454 13 Analytic Continuation

problem. By placing a restriction on the coefficients, we can locate a particular
singular point. Here is one of the results that we have in this direction.

Theorem 13.8. Suppose f(z) =
∑∞

n=0 anzn has radius of convergence R <
∞. If an ≥ 0 for every n, then z = R is a singular point of f .

Proof. If z = R is not a singular point, then f(z) is analytic in some disk
D0 : |z−R| < ε. For a positive number ρ (< R) sufficiently close to R, we can
find an open disk D1 centered at z = ρ that contains the point z = R and is
contained in D0. Then the Taylor series

∞∑
n=0

f (n)(ρ)
n!

(z − ρ)n (13.2)

converges at a point z = R + δ (δ > 0) (see Figure 13.7).

Figure 13.7.

According to Theorem 13.6, the series
∑∞

n=0 anzn has a singular point
somewhere on the circle |z| = R, say Reiθ0 . Hence the Taylor series

∞∑
n=0

f (n)(ρeiθ0)
n!

(z − ρeiθ0)n

has radius of convergence R−ρ (if the radius of convergence were larger, then
Reiθ0 would not be a singular point). Note that for each n we have

f (n)(ρeiθ0) =
∞∑

k=n

k(k − 1) · · · (k − n + 1)ak(ρeiθ0)k−n. (13.3)

Since an ≥ 0, we obtain from (13.3) the inequality

∣∣∣f (n)(ρeiθ0)
∣∣∣ ≤ ∞∑

k=n

k(k − 1) · · · (k − n + 1)akρk−n = f (n)(ρ).
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Thus
1

R − ρ
= lim sup

n→∞

∣∣∣∣f (n)(ρeiθ0)
n!

∣∣∣∣
1/n

≤ lim sup
n→∞

∣∣∣∣f (n)(ρ)
n!

∣∣∣∣
1/n

,

which means that the radius of convergence of (13.2) is at most R − ρ. This
contradicts the fact that the series converges at z = R + δ. Therefore, z = R
is a singular point of f(z).

We have shown that a power series must have at least one singular point on
its circle of convergence. The question arises as to whether there is an upper
bound on the number of singular points on the circle. We will show that it is
possible for every such point to be singular. If f(z) is analytic in a domain
whose boundary is C, and every point on C is a singular point of f(z), then
C is said to be the natural boundary of f(z). In such a case, the domain of
regularity is the same as the domain of analyticity.

We will make use of the following lemma in constructing a power series
with a natural boundary.

Lemma 13.9. Suppose that f(z) =
∑∞

n=0 anzn has a radius of convergence
R. If f(reiθ0) → ∞ as r → R, then the point Reiθ0 is a singular point of f(z).

Proof. If Reiθ0 is a regular point, then there is a function g(z) that is analytic
in a disk centered at Reiθ0 and agrees with f(z) for |z| < R. But then

lim
r→R−

f(reiθ0) = lim
r→R−

g(reiθ0) = g(Reiθ0),

contradicting the fact that the limit on the left side is infinite.

Consider now the function

f(z) =
∞∑

n=0

z2n

= z + z2 + z4 + z8 + · · · ,

which converges (and so is analytic) in the disk |z| < 1. We will show that the
circle |z| = 1 is a natural boundary for the function f(z). First observe that
f(z) → ∞ as z → 1 along the real axis, so that z = 1 is a singular point (this
is also a consequence of Theorem 13.8). Note that f(z) satisfies the relation
f(z) = z+f(z2). Hence f(z) and f(z2) simultaneously approach ∞. But then
f(z2) → ∞ when z2 → 1 through real values, thereby making −1 a singular
point. This gives insight into the general method. The function f(z) satisfies
the recursive relationship

f(z) = z + z2 + z4 + · · · + z2n−1
+ f(z2n

).

For each fixed n, we have

|f(z)| ≥
∣∣∣f(z2n

)
∣∣∣− n (|z| < 1).
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Since f(z2n

) → ∞ along each ray tending to a 2n-th root of unity, it follows
that each 2n-th root of unity is a singular point. That is, all points of the form
e(2kπ/2n)i, where k and n are positive integers, are singular points. Now every
neighborhood of any other point on the unit circle must contain one of these
2n-th roots of unity. Hence no point on the unit circle is a regular point. That
is, |z| = 1 is a natural boundary for f(z).

A similar argument may be used for

f(z) =
∞∑

n=0

zn!,

which is analytic in the disk |z| < 1. If z = re2π(p/q)i, where p and q are
positive integers and 0 < r < 1, then (since e2π(p/q)n!i = 1 for all n ≥ q) it
follows that

|f(z)| =

∣∣∣∣∣
q−1∑
n=0

rn!e2π(p/q)n!i +
∞∑

n=q

rn!

∣∣∣∣∣ ≥
∞∑

n=q

rn! − q. (13.4)

Since the right-hand side of (13.4) tends to ∞ as r tends to 1, all points of
the form e2π(p/q)i are singular points. But these points are dense on |z| = 1,
so that the unit circle is a natural boundary for f(z).

Since a power series converges in a disk, its boundary must be a circle. But
we have defined natural boundary to include a function for which the domain
of analyticity need not be a disk. Consider the function

f(z) =
∞∑

n=0

e−n!z.

Since the series converges uniformly for Re z ≥ δ > 0, the function f(z) is
analytic for Re z > 0. We now show that the imaginary axis is a natural
boundary for f(z).

Suppose z = x + 2π(p/q)i, where p is an integer, q is a positive integer,
and x is a positive real number. Then

|f(z)| =

∣∣∣∣∣
q−1∑
n=0

e−n!(x+2π(p/q)i) +
∞∑

n=q

e−n!x

∣∣∣∣∣ ≥
∞∑

n=q

e−n!x − q. (13.5)

Because the right side of (13.5) tends to ∞ as x tends to 0, it follows that
all points of the form 2π(p/q)i are singular points. But these points are dense
on the imaginary axis so that the imaginary axis furnishes us with a natural
boundary for f(z).

Remark 13.10. Let Δ be the unit disk |z| < 1 and let γ : [0, 1] → Δ be a
curve with γ(0) = 0 and D be such that 0 ∈ D ⊆ Δ. Then there is always
an analytic continuation of (

∑∞
n=0 zn!, Δ) along γ. However, if γ1 : [0, 1] → C
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is given by γ1(t) = 2it, there is no analytic continuation of (
∑∞

n=0 zn!, Δ)
along γ1.

Similar comments apply for the function element (
∑∞

n=0 z2n

, Δ). •
Questions 13.11.

1. If f(z) = z in a domain D0, can f(z) be analytic in a domain D1 even
though f(z) �= z in D1?

2. Can two functions, analytic in the disk |z| < 1, agree at infinitely many
points there and not agree everywhere in the disk?

3. Can an analytic continuation always be transformed into a direct ana-
lytic continuation?

4. Is it possible that the function elements (f,D1) and (g, D2) can be
connected by an infinite chain of function elements, but by no finite
subchain?

5. Why is the domain of regularity a domain?
6. What is the difference between a singular point and a singularity? A

regular point and a point of analyticity?
7. Can infinitely many points on the boundary C of a domain be singular

without C being a natural boundary?
8. If D1, D2, . . . , Dn are domains, when is their union a domain?
9. Is the converse of Lemma 13.9 true?

10. Is there a relationship between gaps in the coefficients of the Maclaurin
series for f(z) and the circle of convergence being a natural boundary?

11. Is there a relationship between the Cauchy Theorem and the Mon-
odromy Theorem?

12. What does the Monodromy theorem tell us about log z? About
√

z?

Exercises 13.12.

1. Given a set of real numbers 0 ≤ θ1 < θ2 < · · · < θn < 2π, construct a
function f(z) such that
(i) f(z) is analytic in |z| < 1;
(ii) the only singular points of f(z) on the unit circle are at

eiθ1 , eiθ2 , . . . , eiθn .
2. Given (f1, D1), where f1(z) =

∑∞
n=0 zn and D1 = {|z| < 1}, construct

a chain {(f1, D1), (f2, D2), . . . , (fn, Dn)}.
3. Show that the set of regular points of an analytic function is open, and

the set of singular points is closed.
4. (a) Show that f(z) =

∑∞
n=0[z

2n+1
/(1−z2n+1

)] is analytic in the domain
|z| < 1 and the domain |z| > 1, and that |z| = 1 is a natural
boundary for the function in each domain.

(b) Determine f(z) in each of these domains in closed form.
5. Show that |z| = 1 is a natural boundary for

∑∞
n=0 z3n

.
6. Suppose

∑∞
n=0 anzn! (an > 0) has radius of convergence R. Show that

|z| = R is a natural boundary.



458 13 Analytic Continuation

7. Suppose f(z) =
∑∞

n=0 anzn is analytic for |z| < 1 and that an is real
for each n. If

∑k
n=1 an → ∞ as k → ∞, show that z = 1 is a singular

point for f(z).
8. Suppose f(z) =

∑∞
n=0 anzn has radius of convergence 1 and that the

only singularities on the circle |z| = 1 are simple poles. Show that the
sequence {an} is bounded.

9. Show that f(z) =
∫ 1

0
(1− tz)−1 dt is an analytic continuation of f0(z) =∑∞

n=1 zn−1/n from the unit disk |z| < 1 into the whole complex plane
minus the interval [1,∞).

10. Suppose f(z) =
∑∞

n=0(−1)nanzn has radius of convergence R and an ≥
0 for every n. Show that z = −R is a singular point.

13.2 Special Functions

There are functions which arise so frequently in complex analysis that they
have intrinsic interest. The gamma function of Euler and the zeta function
of Riemann are two such “special functions” which require special attention.
As we have seen in the previous chapter, the gamma function is meromorphic
with simple poles at 0,−1,−2, . . . , and it is free of zeros. Its reciprocal is an
entire function, with a simple zero at each nonpositive integers and with no
other zeros. This may be expressed as

1
Γ (z)

= zeγz
∞∏

k=1

(
1 +

z

k

)
e−z/k, (13.6)

where

γ = lim
n→∞

(
n∑

k=1

1
k
− lnn

)
.

Thus we may rewrite (13.6) as

1
Γ (z)

=
[

lim
n→∞ ze[1+(1/2)+(1/3)+ ···+(1/n)]z−z ln n

]
lim

n→∞

n∏
k=1

(
z + k

k

)
e−z/k

= lim
n→∞

[
ze−z ln n

n∏
k=1

(
1 +

z

k

)]

= lim
n→∞

z(z + 1)(z + 2) · · · (z + n)
nzn!

.

This leads to an alternate expression for the gamma function, namely

Γ (z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
, (13.7)



13.2 Special Functions 459

which is defined for all values except zero and the negative integers. Equation
(13.7) is referred to as “Gauss’s formula”. Therefore, for all values of z with
z �= 0,−1,−2, . . . , we get that

Γ (z + 1) = lim
n→∞

nz

z + n + 1

(
n!nz

z(z + 1) · · · (z + n)

)
= zΓ (z).

In this way, we obtain an alternate proof of the functional equation of the
gamma function shown in the previous chapter. There is still one more method
to obtain this equation as we shall see soon.

In real analysis, the gamma function is defined in terms of the improper
integral

Γ (x) =
∫ ∞

0

tx−1e−t dt (x > 0). (13.8)

Note that the integral (13.8) makes no sense when x ≤ 0. Indeed, as e−t > e−1

for all t ∈ (0, 1), and for 0 < δ < 1∫ 1

δ

tx−1e−t dt ≥ 1
e

∫ 1

δ

tx−1 dt =
1
e

(
1 − δx

x

)

which approaches ∞ as δ → 0+ for x < 0. Thus, the improper integral (13.8)
diverges for x < 0. It is easy to see that it also diverges at x = 0.

To see that the integral (13.8) converges for all positive x, we write

Γ (x) =
∫ 1

0

tx−1e−t dt +
∫ ∞

1

tx−1e−t dt = I1 + I2.

Since e−t ≤ 1 for t ≥ 0, it follows that the integral (13.8) converges at t = 0
because for each δ > 0,∫ 1

δ

tx−1e−t dt ≤
∫ 1

δ

tx−1 dt =
1 − δx

x
<

1
x

so that I1 ≤ 1/x. For large t,

tx−1e−t ≤ et/2e−t = e−t/2

so that the integral converges at ∞. In fact, since limt→∞(tx−1/et) = 0, the
integrand of I2 is also bounded so that∫ ∞

N

tx−1e−t dt ≤
∫ ∞

N

tx−1

tx+1
dt =

1
N

(N ≥ N(x)).

Hence Γ (x) is defined for all x > 0. An integration by parts gives

Γ (x + 1) =
∫ ∞

0

txe−t dt = − tx

et

∣∣∣∣
∞

0

+ x

∫ ∞

0

tx−1e−t dt = xΓ (x). (13.9)
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Note that (13.6) has been shown to satisfy Γ (x + 1) = xΓ (x) for complex
values of x. From (13.9) and the fact

Γ (1) =
∫ ∞

0

e−t dt = 1,

it follows that Γ (n + 1) = n! for all positive integers n.
Consider now the complex-valued function

Γ (z) =
∫ ∞

0

tz−1e−t dt. (13.10)

For z = x + iy, x > 0, we have∣∣tz−1
∣∣ =

∣∣∣e(x−1) Log t+iy Log t
∣∣∣ = e(x−1) Log t = tx−1.

Hence the integral (13.10) converges absolutely for x > 0, with

|Γ (z)| ≤
∫ ∞

0

∣∣tz−1e−t
∣∣ dt = Γ (x)

so that (13.10) is well defined in the half-plane Re z > 0. We wish to show
that (13.10) has two important properties: first, it is analytic for Re z > 0;
second, it agrees with (13.7) for Re z > 0. This will justify the apparently
inexcusable notation in which the same letter is used for (13.10) and (13.7).

Let K be a compact subset of the half-plane Re z > 0. For z = x+ iy ∈ K,
choose x0, x1 so that 0 < x0 ≤ x ≤ x1 < ∞. Then, we have

|Γ (z)| ≤ Γ (x) ≤
∫ 1

0

tx0−1e−t dt +
∫ ∞

1

tx1−1e−t dt < Γ (x0) + Γ (x1).

Thus Γ (z) is bounded in the infinite strip

x0 ≤ Re z ≤ x1. (13.11)

For n ≥ 1, we set

Γn(z) =
∫ n

1/n

tz−1e−t dt.

We will show that Γn(z) is analytic for Re z > 0, with

Γ ′
n(z) =

∫ n

1/n

tz−1e−t ln t dt.

To this end, we show that, on any strip of the form (13.11), the expression∣∣∣∣∣Γn(z + h) − Γn(z)
h

−
∫ n

1/n

tz−1e−t ln t dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ n

1/n

tz−1e−t

(
th − 1

h
− ln t

)
dt

∣∣∣∣∣
≤

∫ n

1/n

tx−1e−t

∣∣∣∣ th − 1
h

− ln t

∣∣∣∣ dt
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can be made arbitrarily small for |h| sufficiently small. Using the mean-value
theorem and the uniform continuity of ln t on the interval [1/n, n], we can
show that (th − 1)/h converges uniformly to ln t for 1/n ≤ t ≤ n. It thus
follows when |h| < δ(ε) that the last integral above is bounded above by

ε

∫ n

1/n

tx−1e−t dt < εΓ (x) < ε(Γ (x0) + Γ (x1)).

Hence Γn(z) is analytic (for x0 < Re z < x1), with

Γ ′
n(z) =

∫ n

1/n

tz−1e−t ln t dt.

But
lim

n→∞Γn(z) = Γ (z)

for x0 ≤ Re z ≤ x1. Since Γn(z) is locally uniformly bounded in the right
half-plane, Montel’s theorem (Theorem 11.14) may be applied to show that
Γ (z) is analytic for Re z > 0.

We now show that the integral definition (13.10) agrees with (13.7) for
x = Re z > 0. Set

Γ ∗
n(x) =

∫ n

0

tx−1

(
1 − t

n

)n

dt (x > 0, n ≥ 1).

Integrating by parts, we obtain

Γ ∗
n(x) =

tx

x

(
1 − t

n

)n∣∣∣∣
n

0

+
1
x

∫ n

0

tx
(

1 − t

n

)n−1

dt

=
1
x

∫ n

0

tx
(

1 − t

n

)n−1

dt.

Integrating by parts n − 1 more times, we get

Γ ∗
n(x) =

1
x

n − 1
n(x + 1)

n − 2
n(x + 2)

· · · 1
n(x + n − 1)

×
∫ n

0

tx+n−1 dt

=
(n − 1)!nx+n

nn−1x(x + 1) · · · (x + n)

=
n!nx

x(x + 1) · · · (x + n)
.

Thus for x > 0,

lim
n→∞Γ ∗

n(x) = lim
n→∞

n!nx

x(x + 1) · · · (x + n)
. (13.12)

If we can now show that
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lim
n→∞Γ ∗

n(x) =
∫ ∞

0

tx−1e−t dt

on the interval [1, 2], it will then follow from the identity theorem that

lim
n→∞

n!nz

z(z + 1) · · · (z + n)
=

∫ ∞

0

tz−1e−t dt

in the largest domain containing the interval [1, 2] in which both functions are
analytic; that is, the representations (13.7) and (13.10) will have been shown
to be equal in the right half-plane.

For n > N , we have

Γ ∗
n(x) >

∫ N

0

tx−1

(
1 − t

n

)n

dt (1 ≤ x ≤ 2). (13.13)

The sequence of polynomials fn(t) = (1 − t/n)n converges uniformly to e−t

on any finite interval [a, b]. Furthermore,

fn(t) ≤ fn+1(t) ≤ e−t

for n sufficiently large. Hence for each fixed x, the integrand of (13.13) (as a
function of t) converges uniformly to tx−1e−t on the interval [0, N ]. Therefore,

lim
n→∞Γ ∗

n(x) ≥ lim
n→∞

∫ N

0

tx−1

(
1 − t

n

)n

dt =
∫ N

0

tx−1e−t dt.

Since N is arbitrary, it follows that

lim
n→∞Γ ∗

n(x) ≥
∫ ∞

0

tx−1e−t dt. (13.14)

But Γ ∗
n(x) ≤

∫ n

0
tx−1e−t dt ≤

∫∞
0

tx−1e−t dt, so that

lim
n→∞Γ ∗

n(x) ≤
∫ ∞

0

tx−1e−t dt. (13.15)

Combining (13.14) and (13.15), we see that (13.10) agrees with (13.7) for
1 ≤ x ≤ 2, and consequently they must agree in the right half-plane. Hence
(13.7) (or (13.6)) may be viewed as a direct analytic continuation of the
function ∫ ∞

0

tz−1e−t dt

from the domain Re z > 0 to C \{0,−1,−2, . . . }.
Our next discussion concerns the function

ζ(s) =
∞∑

n=1

1
ns

, (13.16)
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known as the Riemann-zeta function. (Here we use the traditional notation
denoting the complex variable s = σ + it rather than z = x + iy.) This is
one of the most challenging and fascinating functions which has a natural link
connecting the set of prime numbers with analytic number theory. We have
already met this series at s = 2 and s = 4 with (p. 433 and Exercise 12.30(6))

ζ(2) = π2/6 and ζ(4) = π4/90.

Since fn(s) = n−s = e−s Log n is an entire function and for s = σ + it,

|n−s| = e−σ Log n = n−σ,

we see that the series (13.16) converges absolutely for Re s > 1 and uniformly
for Re s ≥ σ0 > 1. Hence ζ(s) represents an analytic function in the half-plane
Re s > 1. Consequently,

ζ ′(s) =
∞∑

n=1

f ′
n(s) = −

∞∑
n=2

(lnn)n−s for Re s > 1,

and more generally,

ζ(k)(s) = (−1)k
∞∑

n=2

(lnn)kn−s for Re s > 1.

Now, to see its link with the collection of prime numbers, we prove the fol-
lowing

Theorem 13.13. (Euler’s Product Formula) For σ > 1, the infinite product∏
p (1 − p−s) converges and

1
ζ(s)

=
∏
p

(
1 − 1

ps

)
, (13.17)

where the product is taken over the set P = {2, 3, 5, 7, 11, . . . } of all prime
numbers p.

Proof. Since the series
∑

p−s converges absolutely for all Re s > 1, and it
converges uniformly on every compact subset of the half-plane Re s > 1, the
infinite product (13.17) converges. Next we note that for σ > 1

ζ(s)
1
2s

=
1
2s

+
1
4s

+
1
6s

+ · · ·

so that

ζ(s)
(

1 − 1
2s

)
= 1 +

1
3s

+
1
5s

+ · · · .

Similarly, one can find that
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ζ(s)
(

1 − 1
2s

)(
1 − 1

3s

)
= 1 +

1
5s

+
1
7s

+
1

11s
+ · · · .

More generally,

ζ(s)
(
1 − 2−s

) (
1 − 3−s

)
· · ·

(
1 − p−s

N

)
=

∑
m−s = 1 + p−s

N+1 + · · ·

and because of the unique factorization of integers, we can continue the pro-
cedure to obtain in the limiting case

ζ(s)
∏

p, prime

(
1 − p−s

)
= 1,

as desired.

Next, we wish to find an analytic continuation of the function element

(ζ(s), Re s > 1).

To do this, we will first establish a connection between the Riemann-zeta
function and the gamma function. Recall the integral representation

Γ (s) =
∫ ∞

0

xs−1e−x dx (Re s > 0).

The substitution x = nt gives

Γ (s) = ns

∫ ∞

0

ts−1e−nt dt. (13.18)

Applying the identity

k∑
n=1

e−nt = e−t

(
1 − e−kt

1 − e−t

)
=

1 − e−kt

et − 1

to (13.18), we get

k∑
n=1

1
ns

=
1

Γ (s)

∫ ∞

0

1 − e−kt

et − 1
ts−1 dt.

Thus for Re s > 1 and k a positive integer, we have

k∑
n=1

1
ns

=
1

Γ (s)

∫ ∞

0

ts−1

et − 1
dt − 1

Γ (s)

∫ ∞

0

e−kt

et − 1
ts−1 dt (13.19)

because both integrals converge. It will now be shown that the last integral
tends to 0 as k → ∞.

Since |ts−1| = tσ−1 (σ = Re s), it follows that
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∫ ∞

0

e−kt

et − 1
ts−1 dt

∣∣∣∣ ≤
∫ ∞

0

e−kt

et − 1
tσ−1 dt. (13.20)

Given ε > 0, choose δ small enough so that

∫ δ

0

e−kt

et − 1
tσ−1 dt ≤

∫ δ

0

tσ−1

et − 1
dt < ε (13.21)

for all k. Next choose k large enough so that∫ ∞

δ

e−kt

et − 1
tσ−1 dt ≤ e−kδ

∫ ∞

δ

tσ−1

et − 1
dt < ε. (13.22)

Combining (13.21) and (13.22), we see that the integral in (13.20) becomes
arbitrarily small for k sufficiently large. Upon letting k approach ∞ in (13.19),
we obtain the following result which relates the zeta function with the gamma
function.

Theorem 13.14. For Re s > 1,

ζ(s) =
∞∑

n=1

1
ns

=
1

Γ (s)

∫ ∞

0

ts−1

et − 1
dt. (13.23)

The problem of extending the domain of definition for the Riemann-zeta
function is that the integral in (13.23) diverges for Re s ≤ 1. Now, we wish
to extend ζ(s) analytically to be a meromorphic function on C with a simple
pole at s = 1. To do this, we represent ζ(s) as a contour integral with the help
of (13.23) that avoids the origin, so that the resultant function will be shown
to be entire. The continuation will then be accomplished by relating this new
function to the integral in (13.23).

Let Cε consist of the part of the positive real axis from ∞ to ε (0 < ε < 2π),
the circle centered at the origin of radius ε traversed in the counterclockwise
direction, and the positive real axis from ε to ∞ (see Figure 13.8). Notice
that the contour is chosen with the usual positive orientation. Compare the
contour in Figure 13.8 with the contour in Figure 9.6. Write

Figure 13.8.
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Figure 13.9.

zs−1 = e(s−1) log z,

where log z = ln |z| + i arg z with arg z = 0 when z lies in top edge of the
branch cut of the real axis from ∞ to ε, whereas arg z = 2π when z lies on
the bottom edge of branch cut from ε to ∞. Now, consider the function

f(s) =
∫

Cε

zs−1

ez − 1
dz (0 < ε < 2π). (13.24)

The integral converges, and it represents an entire function of s. Note that
the value of the integral in (13.24) is independent of ε. To see this, suppose
that 0 < ε1 < ε2 < 2π. The region Cε2 −Cε1 , illustrated in Figure 13.9, is seen
to be simply connected. Cauchy’s theorem may thus be applied to show that∫

Cε2−Cε1

zs−1

ez − 1
dz =

∫
Cε2

zs−1

ez − 1
dz −

∫
Cε1

zs−1

ez − 1
dz = 0.

Therefore, ∫
Cε2

zs−1

ez − 1
dz =

∫
Cε1

zs−1

ez − 1
dz.

To evaluate the integral in (13.24), we first assume that Re s > 1, and we
express it in the form

f(s) =
∫ ε

∞

ts−1

et − 1
dt +

∫
|z|=ε

zs−1

ez − 1
dz +

∫ ∞

ε

e(s−1)(ln t+2πi)

et − 1
dt (13.25)

= (e2πis − 1)
∫ ∞

ε

ts−1

et − 1
dt +

∫
|z|=ε

zs−1

ez − 1
dz.

Suppose that σ = Re s > 1. From the identity

ez − 1 = z +
z2

2!
+

z3

3!
+ · · ·

we see that for |z| sufficiently small, |ez − 1| ≥ |z|/2. Hence
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∫
|z|=ε

zs−1

ez − 1
dz

∣∣∣∣∣ ≤ 2
∫
|z|=ε

εσ−1

ε
|dz| = 4πεσ−1,

which approaches 0 as ε → 0. Hence, for Re s > 1, f(s) tends to a limit as
ε → 0. Since f(s) is independent of ε, we may evaluate f(s) by letting ε → 0
in (13.25). This yields

f(s) = (e2πis − 1)
∫ ∞

0

ts−1

et − 1
dt (Re s > 1). (13.26)

We can compare (13.26) with (13.23) to get

Theorem 13.15. For the branch of zs−1 and the contour Cε indicated above,
we have

ζ(s) =
f(s)

(e2πis − 1)Γ (s)
(Re s > 1). (13.27)

That is, we have an identity valid for all Re s > 1:

ζ(s) =
1

(e2πis − 1)Γ (s)

∫
Cε

zs−1

ez − 1
dz.

Although (13.27) was proved only for Re s > 1, as f(s) is an entire func-
tion, the identity theorem may be used to extend this to a larger domain.
Each simple pole of Γ (s) is cancelled by a simple zero of e2πis − 1. Hence
(e2πis − 1)Γ (s) is an entire function. We have thus expressed ζ(s) in (13.27)
as the quotient of entire functions, that is, as a meromorphic function. The
poles of ζ(s) must occur at points where

(e2πis − 1)Γ (s) = 0.

Now Γ (s) �= 0, and e2πis − 1 = 0 at the integers. But for zero and the
negative integers, we have the zeros of e2πis − 1 being cancelled by the poles
of Γ (s). Hence the only zeros of (e2πis −1)Γ (s) occur at the positive integers.
However, ζ(s) was already shown to be analytic for Re s > 1 (thus, f(s) = 0
for s = 2, 3, 4, . . . ). In conclusion, the ζ function is analytic for all values of s
except s = 1 and hence, it continues analytically to C \{1}.

Therefore, the only possible pole for ζ(s) occurs at s = 1. To prove that
s = 1 actually is a pole, we must show that f(1) �= 0. From (13.24), we see
that

f(1) =
∫

Cε

1
ez − 1

dz.

Since the only singularity of 1/(ez −1) inside Cε (0 < ε < 2π) is a simple pole
at z = 0, an application of the residue theorem shows that

f(1) = 2πi lim
z→0

z

ez − 1
= 2πi �= 0.
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Hence ζ(s) has a simple pole at s = 1 with residue

lim
s→1

(s − 1)f(s)
(e2πis − 1)Γ (s)

= 2πi lim
s→1

s − 1
e2πis − 1

= 1.

It follows that
ζ(s) ∼ 1

s − 1
as s → 1 .

Thus the equation (13.27) represents a direct analytic continuation of the
series

∑∞
n=1 1/ns (Re s > 1) to a function analytic in C, except for a simple

pole at s = 1. We have established the following

Theorem 13.16. The zeta function is meromorphic in C with only simple
pole at s = 1 with residue 1.

It follows that the complete Riemann-zeta function may be expressed as

ζ(s) =
1

s − 1
+ g(s),

where g(s) is some entire function. Of course, for Re s > 1,

g(s) =
∞∑

n=1

1
ns

− 1
s − 1

.

In view of the identities

e2πis − 1 = 2ieπis sin πs and Γ (s)Γ (1 − s) =
π

sinπs
,

(13.27) also takes the form

ζ(s) =
f(s)Γ (1 − s)

2πieπis
= −Γ (1 − s)

2πi
e−πi(s−1)f(s). (13.28)

We may rewrite this as

ζ(s) = −Γ (1 − s)
2πi

∫
Cε

(−z)s−1

ez − 1
dz (0 < ε < 2π),

where
(−z)s−1 = e(s−1) Log (−z) for z ∈ C \[0,∞).

The representations (13.27) and (13.28), though valid in C, give no insight
into the location of the zeros for the Riemann-zeta function. To aid us in
this endeavor, we shall develop a recursive relationship for the Riemann-zeta
function, providing explicit information, namely

Theorem 13.17. (Functional Equation of Zeta Function) For all s ∈ C,
the ζ-function satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ (1 − s)ζ(1 − s).
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For the proof of this theorem, the following lemma will be helpful.

Lemma 13.18. Let D be the domain consisting of the whole plane, excluding
disks of the form |z−2kπi| < 1

2 , k an integer. Then there exists a real number
δ > 0 such that |ez − 1| ≥ δ for z in D.

Proof. Since ez −1 is a periodic function of period 2πi, it suffices to prove the
inequality for the region R consisting of the strip −π ≤ Im z ≤ π, excluding
the disk |z| < 1

2 . Observe that ez − 1 tends to ∞ as z approaches ∞ in the
right half-plane on R, and approaches −1 as z tends to ∞ in the left half-plane
of R. Choose δ, 0 < δ < 1, such that |ez − 1| ≥ δ on the circle |z| = 1

2 . Since
ez − 1 never vanishes in R, the minimum modulus theorem may be applied to
show that |ez − 1| ≥ δ for all z in R.

Now we proceed to prove Theorem 13.17. For the proof, we modify the
contour Cε used to define f(s) in (13.24). Fix s with s < 0. Let 0 < ε < 2π
and k be a positive integer. Let Ck differ from the contour in Figure 13.8 only
in that the circle has radius (2k + 1)π instead of ε. Define

fn(s) =
1

2πi

∫
Ck

zs−1

ez − 1
dz.

The idea is to relate the integral (13.24) defined for Cε with a new integral
defined for Ck but with a factor 1/2πi, introduced for convenience. Then the
function

zs−1

ez − 1
has simple poles inside the contour Ck − Cε at the points

z = ±2nπi (n = 1, 2, . . . , k).

The residue at ±2nπi is

lim
z→±2nπi

(
z ± 2nπi

ez − 1

)
zs−1 = (±2nπi)s−1

= e(s−1)[ln(2nπ)+i arg(±πi)]

= (2π)s−1ns−1ei(s−1) arg(±πi).

As arg(iπ) = iπ/2 and arg(−iπ) = i3π/2, making use of the residue theorem,
we have

1
2πi

∫
Ck−Cε

zs−1

ez − 1
dz = (2π)s−1

(
e(s−1)iπ/2 + e(s−1)i3π/2

) k∑
n=1

ns−1.

We substitute
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e(s−1)iπ/2 + e(s−1)i3π/2 = e(s−1)iπ
(
e−(s−1)iπ/2 + e(s−1)iπ/2

)
= −2eiπs sin(πs/2).

Hence it follows that

1
2πi

∫
Ck−Cε

zs−1

ez − 1
dz = −2(2π)s−1eiπs sin(πs/2)

k∑
n=1

1
n1−s

. (13.29)

By Lemma 13.18, we have∣∣∣∣∣ 1
2πi

∫
|z|=(2k+1)π

zs−1

ez − 1
dz

∣∣∣∣∣ ≤ 1
2πδ

∫
|z|=(2k+1)π

|zs−1| |dz| (13.30)

≤ 1
δ
{(2k + 1)π}s

→ 0 as k → ∞ (since s < 0).

In view of (13.30), we let k → ∞ in (13.29) to obtain

1
2πi

∫
−Cε

zs−1

ez − 1
dz = −2(2π)s−1eiπs sin(πs/2)ζ(1 − s) (s < 0).

That is the function f(s) in (13.24) may be expressed as

f(s)
2πi

= 2(2π)s−1eiπs sin(πs/2)ζ(1 − s) (s < 0). (13.31)

A substitution of (13.31) into (13.28) yields the identity

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ (1 − s)ζ(1 − s) (s < 0). (13.32)

Since both sides of this identity are meromorphic functions of s, this hold for
all s, by the identity theorem. The proof of Theorem 13.17 is now complete.

Much of the analytic interest in the zeta function follows from the func-
tional equation (13.32). For instance, the expression (13.32) enables us to
locate some of the zeros of ζ(s). Note first that, as a consequence of Theorem
13.13, ζ(s) has no zeros in the half-plane Re s > 1. Since Γ (1−s) and ζ(1−s)
are both analytic and nonzero for Re s < 0, the only zeros of ζ(s) there are
due to the zeros of sin(πs/2), that is, at the points s = −2,−4, . . . . These
zeros are called the trivial zeros of the Riemann-zeta function.

The only zeros unaccounted for must lie in the strip 0 ≤ Re s ≤ 1, which
is called the critical strip. Now, we formulate

Theorem 13.19. The only zeros of the zeta function not in the critical strip
are at −2n, n ∈ N.
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The problem of classifying the zeros of the zeta function is a formidable
(and unsolved) task. Thus far, infinitely many zeros have been found in this
strip; remarkably, all are situated on the line Re s = 1/2, which is called the
critical line. Also, it is proved that the zeta function has zeros neither on the
line Re s = 1 nor on the line Re s = 0. A theorem of Hardy proves that there
are infinitely many zeros inside the critical strip. See the books by Edwards
[E] and Ivic [I] for further information.

Encouraging the student to further pursue mathematics, we end this book
not with a theorem but with a famous conjecture known as the

Riemann Hypothesis. All the nontrivial zeros of ζ(s) lie on the line Re s =
1/2.

Questions 13.20.

1. Is Γ (0+) = ∞?
2. Is

∫
|z|=1/3

Γ (z) dz = 2πi?
3. For n ∈ N, what is the value of

∫
|z|=n+1/3

Γ (z) dz?
4. For n ∈ N, is the function

Γ (z) − (−1)n

n!(z + n)

analytic in the disk |z + n| < 1?
5. Is there a function f(z) �= Γ (z), analytic in the right half-plane, that

satisfies the relationship f(z + 1) = zf(z)?
6. What properties of the gamma function can most easily be proved by

(13.7)?
7. What identities can be found by comparing (13.6), (13.7), and (13.10)?
8. In showing the equivalence of (13.7) and (13.10) in the right half-plane,

why was it necessary to first show that they agreed on a finite interval?
9. What properties do the gamma function and the Riemann-zeta function

have in common?
10. How do the properties of

∑∞
n=1 anzn and

∑∞
n=1(an/zn) compare?

11. What kind of function is (1 − s)ζ(s)/Γ (s)?
12. What information about the Riemann-zeta function, other than the lo-

cation of some zeros, can we obtain from (13.32)?
13. Is the set of all zeros of the zeta function symmetric with respect to

both the critical line and the real axis?

Exercises 13.21.

1. Prove Legendre’s duplication formula
√

πΓ (2z) = 22z−1Γ (z)Γ (z + 1/2).
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2. Show that the gamma function may be expressed as

Γ (z) =
∫ ∞

1

e−ttz−1 dt +
∞∑

n=0

(−1)n

n!(z + n)
.

3. Show that Re ζ(s) > 0 when Re s ≥ 2.
4. Show that (1−1/2s−1)ζ(s) is an entire function and may be represented

as
∑∞

n=1(−1)n+1/ns for Re s > 1. Where else does this series converge?

5. For 0 < Re s < 1, show that

ζ(s) =
1

Γ (s)

∫ ∞

0

ts−1

(
1

et − 1
− 1

t

)
dt.

6. Show that ζ(1 − s) = (1/2s−1πs) cos(πs/2)Γ (s)ζ(s).
7. Determine an analytic continuation of

∑∞
n=1 zn/n1/4.

8. Consider the analytic function

f(z) =
∞∑

n=1

1 + c

n + c
zn (c > −1).

Determine the largest domain to which f can be analytically continued?
Determine an analytic continuation of f from the unit disk to a larger
domain?
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